
Configuration
Management
with Puppet
Introduction

What is Puppet

● is a configuration management system
● is a programming language
● offers a Client/Server architecture
● has a huge community
● widely used in the IT industry
● commercial support available if needed

What else is needed

● central software repositories
○ yum
○ apt

● Provisoning system
○ kickstart
○ preseed

● Version control
○ GIT
○ subversion

Contents

● Resources
● Manifests
● Ordering
● Variables, Conditionals, and Facts
● Classes
● Module

Resources

All elements of a node will be described as
resources
● Files
● User
● Services
● ... (about 50)

Resources

● Abstraction layer to access the resources
(RAL)

● Resources has attributes
○ a File has a Path.

● The RAL gives you os independence
○ BUT!! not all resources are available on every

platform
● Resources well documented

Example Resource

user { 'dave':
 ensure => present,
 uid => '507',
 gid => 'admin',
 shell => '/bin/zsh',
 home => '/home/dave',
 managehome => true,
 }

Ressource shell

You can interact with the RAL directly.

● puppet resource user root
● puppet resource user dave \

ensure=present shell="/bin/zsh" \
home="/home/dave" managehome=true

Resource Documentation
$ puppet describe -s user

user
====
Manage users. This type is mostly built to manage system
users, so it is lacking some features useful for managing normal
users.

This resource type uses the prescribed native tools for creating
groups and generally uses POSIX APIs for retrieving information
about them. It does not directly modify `/etc/passwd` or anything.

Parameters

 allowdupe, auth_membership, auths, comment, ensure, expiry, gid, groups,
 home, key_membership, keys, managehome, membership, name, password,
 password_max_age, password_min_age, profile_membership, profiles,
 project, role_membership, roles, shell, uid

Providers

 directoryservice, hpuxuseradd, ldap, pw, user_role_add, useradd

Resource basic

● file vs. augeas
● yumrepo stages
● package ensure latest ?
● exec only if needed

Manifests

● manifests are puppet programs
● puppet programs

○ declare resources
○ define conditions
○ group resources
○ generate text
○ link other manifests
○ define ordering

Manifests Compile

P
uppet-D

ev

M
anaged-N

ode

writes

transform

Manifests Run

actual status defined status
Puppet Action

/etc/service.conf

/etc/init.d/service: not running /etc/init.d/service: running

write file

start service

no file /etc/service.conf /etc/service.conf

start service

Manifests example!
file {'/tmp/test1':
 ensure => present,
 content => "Hi.",
 }

file {'/tmp/test2':
 ensure => directory,
 mode => 0644,
}

file {'/tmp/test3':
 ensure => link,
 target => '/tmp/test1',
}

notify {"I'm notifying you.":}

notify {"So am I!":}

Ordering example!
 # /root/learning-manifests/break_ssh.pp, again
 file { '/etc/ssh/sshd_config':
 ensure => file,
 mode => 600,
 source => '/root/learning-manifests/sshd_config',
 }

 service { 'sshd':
 ensure => running,
 enable => true,
 subscribe => File['/etc/ssh/sshd_config'],
 }

Facts example!
host {'self':
 ensure => present,
 name => $fqdn,
 host_aliases => ['puppet', $hostname],
 ip => $ipaddress,
}

file {'motd':
 ensure => file,
 path => '/etc/motd',
 mode => 0644,
 content => "Welcome to ${hostname},\na ${operatingsystem}
island in the sea of ${domain}.\n",
}

Conditionals a first example!
 if $is_virtual == 'true' {
 service {'ntpd':
 ensure => stopped,
 enable => false,
 }
 }
 else {
 service { 'ntpd':
 name => 'ntpd',
 ensure => running,
 enable => true,
 hasrestart => true,
 require => Package['ntp'],
 }
 }

Node dbsrv02.desy.de:

Structure of Configuration

Site

Node websrv01.desy.de:

Module: SSH

ssh ssh::install ssh::config

ssh::params ssh::service

Module: apache

apache apache::install apache::config

apache::params apache::service

Structure of a Module

Module: foo

manifests files templates test

foo/manifests/init.pp
foo/manifests/params.pp
foo/manifests/config.pp
foo/manifests/install.pp
foo/manifests/service.pp

Structure of a Module

Module: foo

manifests files templates test

foo/files/bar.conf

Structure of a Module

Module: foo

manifests files templates test

foo/templates/baz.erb

Class a first example!

class ntp inherits ntp::params{
 include ntp::install

 include ntp::service
}

/ntp/manifests/init.pp

Class a first example!

class ntp::params{
 $service_name ='ntpd'
 $conf_file ='ntp.conf.el'
}

/ntp/manifests/params.pp

Class a first example!

class ntp::install {
 package { 'ntp':
 ensure => installed,
 }
}

/ntp/manifests/install.pp

Class a first example!

class ntp::service {
 service { 'ntp':
 name => $service_name,
 ensure => running,
 enable => true,
 subscribe=> File['ntp.conf'],
 }
}

/ntp/manifests/service.pp

Puppet process - Step 1

registration
Example: foreman, satellite, spacewalk ...
Creates: Kickstart File and Puppet Node definition

Puppet process - Step 2

provisioning
Tool: Redhat anaconda, Ubuntu Fai, cobbler, preseed
Input:

anaconda configured by kickstart file
preseed config file
…

Result: Installing minimal linux and puppet, and start
Puppet after reboot

Puppet process - Step 3

configuration
Tool: puppet
Input:

node definition
Result: puppet defined system state

Organization of the modules

modules / features ntp afs apache

it_desktop x x

xfel_webserver x x

Node {
include
desktop}
}

It's the end my friend!

