
Bug Avoidance

override
● Tell the compiler, that you think you override a virtual

function of a base class with the new keyword:
override

Have a glimpse at these two
classes...

We assume you write some code
like this…
Already written for you!

Warm Up
● Take file INIOverride.cc and compile it with

g++ -std=c++11 -Wall INIOverride.cc -o INIOverride
● Execute the executable!

Programmers should expect the
same result in the calls to the
reference and to the object itself!

A const function is not the same as its non-const
counterpart. Therefore this is not overriding
anything.

Function in base class is not declared virtual,
therefore no overriding, but shadowing. In a
good compiler this throws a warning.

Try out override!
● Write override in the derived classes at all points, where

you think it makes sense.
Syntax is as follows:

Then try compilation again!

This is what you should get
 g++ -std=c++11 -Wall Override.cc -o Override
Override.cc:27:7: error: “int MonsterTruck::getMaxSpeedInKmh()” marked
override, but does not override
Override.cc:33:7: error: “int MonsterTruck::getNSeats()” marked override, but
does not override

Should you expect
warnings?
● With all

warnings
on, a good
compiler...

Should(?) warn, that there is already a function you
inherit of. Don’t use virtual at the derived function.

Warns about shadowing another function.

Summary for override
● Use it consequently just as you use const consequently to make

the compiler help you to detect bugs.
● Don’t use virtual for overriding functions. It should indicate to be at

the top of the polymorphism order. override now indicates the fact,
that a function is lower in the polymorphism order.

final
● Tell the compiler to not allow further overriding of a

function with the keyword
final

This is a reference to a car! Conceptionally you
expect a car to be a ground vehicle, not a
hoovering vehicle!

This is the syntax you
need.

Modify INIFinal.cc accordingly
and compile!

First Finding
● In contrast to override the application of final can’t follow

simple rules. It is a conceptional decision to decide, that
subclasses shouldn’t behave differently.

As well classes can be marked final
The only function can be used more efficiently!
g++ -std=c++11 -Wall -O3 -ftree-vectorizer-verbose=6 INIFinal2.cc

… and a less obvious example for efficiency
Usually, to avoid such things
from happening, people are
using arrays (or vectors) of
pointers. However, this can
cause the actual objects to be
scattered around in the
memory and make the
caching in the CPU less
efficient.
If you make
DriftChamberHitHelium final,
you don’t have to worry about
mistakes, when using an
array of objects.

g++ -std=c++11 -Wall INIFinal3.cc -o INIFinal3

Second Finding

● final can improve efficiency, both by facilitating
vectorization and by helping with better data structures.

Smart Pointers
● Although already available via boost, smart pointers

have increased in prominence.

A bit more
on this in a
moment.

