Bug Avoidance



override

e Tell the compiler, that you think you override a virtual
function of a base class with the new keyword:
override



JI** Struct to hold information about cars.

*
*

To have multiple cars of a certain different type, you can inherit from this struct.

*/
struct Car {

Y

/** Returns a generic estimate of the weight of a car (1 ton), if not overriden.*/
virtual int getWeightInKg();

/** Returns a generic estimate of the speed of a car (180), if not overriden.*/
virtual int getMaxSpeedInKmh() const;

/** Returns a generic estimate of the number of wheels of a car (4), if not overriden.*/
virtual int getNWheels();

/** Returns a generic estiate of the number of seats in a car (5), if not overrriden.*/
int getNSeats();

Have a glimpse at these two

/** Class to use with the bigger and slower Monster Truck spcial car.*/ classes...
struct MonsterTruck: public Car {

/** Monster Trucks are much heavier on average the averge cars (3 tons).*/
int getWeightInKg();

/** Monster Trucks are much slower than average cars (80).*/
int getMaxSpeedInKmh();

/** Monster Trucks have double wheels (--> 8) due to their big weight.*/
virtual int getNWheels();

/** Monster Trucks have one big front bench with 3 seats.*/
int getNSeats();



int main()

t We assume you write some code
using namespace std;

like this...
MonsterTruck monsterTruck; Already written for you!
Car& car = monsterTruck;
cout << "Weight: " << car.getWeightInKg() << endl;
cout << "Speed: " << car.getMaxSpeedInKmh() << endl;
cout << "Number of Wheels: " << car.getNWheels() << endl;
cout << "Number of Seats: " << car.getNSeats() << endl;
cout << "Once more the Speed: " << monsterTruck.getMaxSpeedInKmg() << endl;
cout << "Once more the number of Seats: " << monsterTruck.getNSeats() << endl;



Warm Up

e Take file INIOverride.cc and compile it with
g++ -std=c++11 -Wall INIOverride.cc -o INIOverride
e EXxecute the executable!



int main()

{

using namespace std;

MonsterTruck monsterTruck;
Car& car = monsterTruck;
cout << "Weight:

cout << "Speed:

cout << "Number of Wheels:
cout << "“Number of Seats: "

n <<
" <<
" <<

<<

cout << "Once more the Speed: "

cout << "Once more the number of Seats:

car.getWeightInKg() << endtl;

car.getMaxSpeedInKmh() << endl;

car.getNWheels() << endl;
car.getNSeats() << endl;

<< monsterTruck.getMaxSpeedInKmg() << endl;

" << monsterTruck.getNSeats() << endl;

g++ -std=c++11 INIOverride.cc -o INIOverride -Wall

}
ekplx76
ekplx76
./INIOverride
Weight: 3000
Speed: 180

Number of Wheels: &
Number of Seats:
80

Once more the Speed:

Once more the number ot Seats:

Programmers should expect the
same result in the calls to the
reference and to the object itself!



JI** Struct to hold information about cars.

*
*

To have multiple cars of a certain different type, you can inherit from this struct.

*/
struct Car {

Y

/** Returns
virtual int

/** Returns
virtual int

/** Returns
virtual int

/** Returns

a generic estimate of the weight of a car (1 ton), if not overriden.*/
getWeightInKg();

a generic estimate of the speed of a car (180), if not overriden.*/
getMaxSpeedInKmh() const;

a generic estimate of the number of wheels of a car (4), if not overriden.*/
getNWheels();

a generic estiate of the number of seats in a car (5), if not overrriden.*/

int getNSeats();

/** Class to use with the bigger and slower Monster Truck spcial car.*/
struct MonsterTruck: public Car {
/** Monster Trucks are much heavier on average the averge cars (3 tons).*/

int getWeightInKg();

A const function is not the same as its non-const

/** Monster Trucks are much slower than average cars (80).*/ counterpart. Therefore this is not overriding
int getMaxSpeedInKmh(); anything.

/** Monster Trucks have double wheels (--> 8) due to their big weight.*/
virtual int getNWheels();

Function in base class is not declared virtual,

/** Monster Trucks have one big front bench with 3 seats.*/ therefore no overriding, but shadowing. In a

int getNSeats();

good compiler this throws a warning.



Try out override!

e \Write override in the derived classes at all points, where
you think it makes sense.
Syntax is as follows:

/** Monster Trucks are.much heavier on average the averge cars (3 tons).*/
int getWeightInKg() override;

Then try compilation again!



This is what you should get

g++ -std=c++11 -Wall Override.cc -o Override

Override.cc:27:7: error: “int MonsterTruck::getMaxSpeedInKmh()” marked
override, but does not override

Override.cc:33:7: error: “int MonsterTruck::getNSeats()” marked override, but
does not override



Shou Id yért‘]t te**‘géné]tw about cars.

To have multip¥®e cars of a certain different type, you can inherit from this struct.

n */
warnings?::
/™* Returns a generic estimate of the weight of a car (1 ton), if not overriden.*/

virtual int getWeightInKg();

/** Returns a generic estimate of the speed of a car (180), if not overriden.*/

e With all virtual int getMaxSpeedInKmh() const;
Warnings /** Returns a generic estimate of the number of wheels of a car (4), if not overriden.*/
virtual int getNWheels();
on, a good
. /** Returns a generic estiate of the number of seats in a car (5), if not overrriden.*/
Compller... int getNSeats();
b

/** Class to use with the bigger and slower Monster Truck spcial car.*/
struct MonsterTruck: public Car {
/** Monster Trucks are much heavier on average the averge cars (3 tons).*/
int getWeightInKg();

/** Monster Trucks are much slower than average cars (80).*/
int getMaxSpeedInKmh();

* % -->
Clrtﬂg’fsfi{ ;gﬁ,ﬁﬁegf;f CU8ho f&}’?) &Narra3 that ¢ ongeilsratirgacfy LFuriction you
inherit of. Don’t use virtual at the derived function.
/** Monster Trucks have one big front bench with 3 seats.*/
int getNSeats(); Warns about shadowing another function.
I



Summary for override

e Use it consequently just as you use const consequently to make

the compiler help you to detect bugs.
e Don’t use virtual for overriding functions. It should indicate to be at

the top of the polymorphism order. override now indicates the fact,
that a function is lower in the polymorphism order.



final

e Tell the compiler to not allow further overriding of a
function with the keyword
final



#include <iostream>

struct Vehicle {
enum class VehicleType{
HooverVehicle, // =0
GroundVehicle // =1

b

virtual VehicleType getVehicleType() const = 0;
}i

struct Car: public Vehicle {

VehicleType getVehicleType() const override {
return VehicleType::GroundVehicle;
}i
}i

struct MonsterTruck: public Car {
VehicleType getVehicleType() const override {
return VehicleType: :HooverVehicle;
}i
}i

int main()

{

using namespace std;

MonsterTruck monsterTruck;
Car& car = monsterTruck;

This is a reference to a car! Conceptionally you
expect a car to be a ground vehicle, not a
hoovering vehicle!

cout << "Vehicle Type: " << static cast<int>(car.getVehicleType()) << endl;

}



#include <iostream>

struct Vehicle {
enum class VehicleType{
HooverVehicle, // = 0
GroundVehicle // =1

}

virtual VehicleType getVehicleType() const = 0;
b

struct Car: public Vehicle {
//Declared final, because it will be very confusing to have references of type car, that
// are not declared a GroundVehicle;

VehicleType getVehicleType() const override final { This is the syntax you
return vehicleType::GroundVehic(e; need.
}i
}i
struct MonsterTruck: public Car {
VehicleType getVehicleType() const override { MOdIfy INIFinal.cc accordingly
return VehicleType: :HooverVehicle; .
}i and compile!
}i
int main()

{

using namespace std;

MonsterTruck monsterTruck;
Car& car = monsterTruck;
cout << "Vehicle Type: " << static cast<int>(car.getVehicleType()) << endl;

}



First Finding

e |n contrast to override the application of final can’t follow
simple rules. It is a decision to decide, that
subclasses shouldn’t behave differently.



As well classes can be marked final

#include <vector>

The only function can be used more efficiently!

#include <iostream> g++ -std=c++11 -Wall -O3 -ftree-vectorizer-verbose=6 INIFinal2.cc

template<class ANumbers \ \

struct AbsCalculator {
virtual ANumber addNumbers(ANumber firstNumber, ANumber secondNumber) {

return (firstNumber + secondNumber) ;
}
}s
struct IntegerCalculatorBase {
virtual int addIntegerNumbers(int firstNumber, int secondNumber) = 0;
}s
struct FinalIntegerCalculator public IntegerCalculatorBase {
int addIntegerNumbers(int firstNumber, int secondNumber) override {
return (firstNumber + secondNumber) ;
}
¥
struct NonFinallntegerCalculator : public IntegerCalculatorBase {
int addIntegerNumbers(int firstNumber, int secondNumber) override {
return (firstNumber + secondNumber) ;
}
¥

int main (){
int addendsl[10]
int addends2[10]
int sum[10];

AbsCalculator<int> templateCalculator;
for (int ii = 0; i1 < 10; ii++){
sum[ii] = templateCalculator.addNumbers(addendsl[ii], addends2[ii]);

}

std::cout << sum[0] << std::endl;

NonFinallIntegerCalculator* nonFinalPointer = new NonFinallntegerCalculator()
for (int ii = 0; i1 < 10; ii++){
sum[ii] = nonFinalPointer->addIntegerNumbers(addendsl[ii], addends2[ii]);

1

std::cout << sum[0] << std::endl;

FinallntegerCalculator* finalPointer = new FinallntegerCalculator();
for (int i1 = 0; i1 < 10; ii++){
sum[ii] = finalPointer->addIntegerNumbers(addendsl[ii], addends2[ii]);

std::cout << sum[0] << std::endl;

}



... and a less obvious example for efficiency

#include <iostream>
struct DriftChamberHitBase{

| &

struct DriftChamberHitHelium{
¥

struct DriftChamberStereoHit : public DriftChamberHitHelium{
DriftChamberStereoHit(float stereoAngle) : m_stereoAngle(stereoAngle){}

float getStereoAngle() {
return m_stereoAngle;

¥

private:
float m_stereoAngle;

b g++ -std=c++11 -Wall INIFinal3.cc -o INIFinal3

int main(){
DriftChamberHitHelium hits[8];
for (auto hit : hits) {
hit = DriftChamberStereoHit(0.003); //STUPID, but compiler won't warn.

Usually, to avoid such things
from happening, people are
using arrays (or vectors) of
pointers. However, this can
cause the actual objects to be
scattered around in the
memory and make the
caching in the CPU less
efficient.

If you make
DriftChamberHitHelium final,
you don’t have to worry about
mistakes, when using an
array of objects.



Second Finding

e final can improve efficiency, both by facilitating
vectorization and by helping with better data structures.



Smart Pointers

e Although already available via boost, smart pointers
have increased in prominence.



®\\Vhat is a smart pointer?
®an abstract data type that simulates a pointer while providing
additional features, such as automatic memory management.
®These additional features are intended to reduce bugs caused
by the misuse of pointers.

®\What does it do?
®|t prevents most situations of memory leaks by making the resource
de—allocation automatic.
®The resource controlled by a smart pointer is automatically destroyed
when the last (or only) owner of the resource is destroyed.
®|t also eliminates dangling pointers by postponing destruction
until the resource is no longer in use.

®C++11 provides:
(1) unigque_ptr : memory is released when it goes out of the scope.
(2) shared_ptr : can have multiple shared_ptr pointing a same object.
(3) weak_ptr :work with shared_ptr but have no ownership.

Nov. 13-16, 2013 Y.Unno




(1) unique_ptr

A bit more
on thisin a
moment.

®This pointer type has its copy constructor and assignment
operator explicitly deleted.

® T his cannot be copied.

® T his can be moved using std::move, which allows one
unique_ptr object to transfer ownership to another.

std: :unique ptr<int> pl(new int(3));
std::unique ptr<int> p2 = pl; //Compile error.
std::unique ptr<int> p3 = std::move(pl); //Transfers ownership.

p3.reset(); //Deletes the memory.
pl.reset(); //Does nothing.

Nov. 13—-16, 2013




(2) shared_ptr
®Each copy of the same shared_ptr owns the same pointer.
®This represents reference—counted ownership of a pointer.
®Counter is in(de)cremented if # of shared_ptr in(de)creases.
®The pointer will only be freed if all instances of the shared_ptr
in the program are destroyed.

std: :shared ptr<int> pl(new int(5)):;
std: :shared ptr<int> p2 = pl; //Both now own the memory.

pl.reset(); //Memory still exists, due to p2.
p2.reset(); //Deletes the memory, since no one else owns the memory.

®Reference counting = circular references are potentially a problem.

class loop{ int main(){
public: std::shared_ptr<loop> p1(new loop);
loop(){} std::shared_ptr<loop> p2(new loop);
~loop(){} p1=>ptr = p2;
std::shared_ptr<loop> ptr; p2->ptr = p1;
} return O;
} // instance is not released

Nov. 13-16. 2013 Y.Unno




(3) weak_ptr

®Have no ownership.

® 10 break up cycles, weak_ptr can be used to access the stored object.

®The stored object will be deleted if the only references to the object are
weak_ptr references.

std::shared ptr<int> pl(new int(5)):
std::weak ptr<int> wpl = pl; //pl owns the memory.

{
std::shared ptr<int> p2 = wpl.lock(); //Now pl and p2 own the memory.
if(p2) //Always check to see 1f the memory still exists
{
//Do something with p2

}
} //p2 is destroyed. Memory is owned by pl.

pl.reset(): //Memory is deleted.

std::shared ptr<int> p3 = wpl.lock():; //Memory is gone, so we get an empty shared ptr.
if(p3)
{

//Will not execute this.

}

Nov. 13-16. 2013 Y.Unno 5




values anda rvailues

= What are Ivalues and rvalues? Originally:

An lvalue is something that can occur on the left hand side of an
assignment.

= An rvalue is something that can only occur on the right hand side.

x =5; // x is an lvalue
y =7; // y is an lvalue
3

= x; // Wrong, 3 is not an lvalue

*

x *x y=23; // Wrong, x * y is not an lvalue

= A better definition might be that an Ivalue is something that can be assigned
to, or something that has a memory location that can be referred to, or
perhaps something that has a name.

= An rvalue is then something that is not an lvalue.

11 November 2013 Belle I software 2



oplies and moves

There are many places in c++ where we may perform copy operations which
use a lot of resources, e.g.:

vector<int> addSeven (const vector<int>& v) {
vector<int> new_values;

for (auto itr = v.begin(), end_itr = v.end(); itr != end_itr; ++itr) {
new_values.push_back(*itr + 7);

}

return new_values;

}

int main() {
vector<int> v;
for (int 1 = 0; i < 100; ++i) A
v.push_back(i) ;
}
v = addSeven(v) ;

, .

A temporary vector is created by the return, and then the assignment at the end of main.

(Note: In many cases compiler's return value optimisation or specialisations within standard
library classes ameliorate the need for extra copies for us).



Another example is the swap function, which performs extra copies:

template<class T> swap(T& a, T& b) |
T tmp(a); // now we have two copies of a
a = b; // now we have two copies of b
b = tmp; // now we have two copies of tmp (aka a)

}

This can use a lot more resources than need to be used, (particularly if the
copy operation if particularly expensive in terms of resources).

We may not actually want to use a copy if we just want to move something.

= |.e we make a copy of something that is going to disappear anyway:
= We would like to move the temporary to where it will be used,

= But we cannot provide an address/reference for an rvalue.



rvaiue rereences

= C++11 introduces a new type of reference: the rvalue reference.

= This is identified by &&:
T&& rref;

= The familiar c++ reference can now be referred to as the Ivalue reference:
T& lref;

=  The introduction of rvalue references allows for the introduction of moves to
c++. This is most commonly seen in:

o

Move constructor,

[m}

Move assignment operator.

= These are comparable to the copy constructor, and copy assignment
operator.

This is shown for the move constructor (on the next slide), the move
assignment operator is obtained via a similar analogy.



Move constructor

Consider a simple class myClass, which contains an array (_values) and a
size (_size):

The copy constructor takes an Ivalue reference to another instance of my
class, and copies all of the contents into a new instance.

’/ copy constructor
myClass (const myClass& other)
: _values(new int[other._size])

, _size(other._size) {

for (int i(0); i < _size; ++i) A
_values[i] other._values[i];
}
}



Move constructor

= Consider a simple class myClass, which contains an array (_values) and a
size (_size):

= The copy constructor takes an Ivalue reference to another instance of my
class, and copies all of the contents into a new instance.

// copy constructor // move constructor
myClass (const myClass& other) myClass (myClass&& other)
: _values(new int[other._size]) : _values(other._values)
, _size(other._size) { , _size(other._size) {
for (int i(0); i < _size; ++i) A other._values NULL;
_values[i] other._values[i]; other._size 0;
} +

-

The move constructor takes a (non-const) rvalue reference to another
Instance of the class.

It takes the contents of the other instance.

o

It then sets the contents of other to NULL.

o

= This is necessary so that they are not destroyed when the destructors
for (temporary) instances are called.



More on moving, and stc

n

If the class you wish to write a move constructor for contains an object then
it is not enough to do:
_someObject (other._somelbject)

It is necessary to use
_someObject(std: :move(other._someObject))

in case that the object in question itself calls a move function.

std::move is a function that comes from <utility>.

It takes something that is an lvalue, and allows it to be used as an rvalue,
and moved.

Note: x = std::move(y);

Here the content of y is moved to X, but y is still available but its contents
may be invalid. This is not an issue if we are copying temporary objects, as
iIs commonly the case.



Back to the swap example

Swap can now be written:

template<class T>
void swap(T& a, T& b) {
T tmp = std::move(a); // could invalidate a
a = std::move(b); // could invalidate b
b = std::move(tmp); // could invalidate tmp

}

There are now no copies, some objects could be invalidated, but these will
be thrown away anyway.



Other uses of moves

There are cases where a set of arguments might be passed to function,
which are then passed to another function:

For example, arguments are passed to a factory method, which then
passes them to a constructor.

It is possible that the arguments are not passed correctly.

This can now be avoided using std::forward, which ensures that the
arguments are exactly the same.

template <class T, class Al>
std: :shared_ptr<T>
factory(A1&& al) {
return std::shared_ptr<T>(new T(std::forward<Ail>(al)));
}



Summary

[m]

C++11 introduces rvalue references, denoted by &&.

These allow for the introduction of moves which can ameliorate the need for
lots of unnecessary copy actions.

Commonly these are seen move constructors and move assignment

operators:

myClass (const myClass&) ; // copy comnstructor
myClass (myClass&&) ; // move constructor
myClass& operator=(const myClass&); // copy assignment
myClass& operator=(myClass&&) ; // move assignment

The std::move function can be used to move objects. It can also be
considered as changing an lvalue to an rvalue.

The addition of move allows for other options such as perfect forwarding.



Resourses

Some websites with information on the issues discussed here:
http://www.stroustrup.com/C++11FAQ.html#rval
http://www.cprogramming.com/c++11/rvalue-references-and-move-semantics-in-c++11.htmi
http://en.cppreference.com/w/cpp/utility/move
http://en.cppreference.com/w/cpp/utility/forward
http://en.cppreference.com/w/cpp/language/move_constructor

http://www.open-std.org/jtcl/sc22/wg21l/docs/papers/2006/n2027.html



