D —

efficiency code re-use

e Famous sentences about optimization:
o "We should forget about small efficiencies, say about 97%
of the time: premature optimization is the root of all evil"
o "In established engineering disciplines a 12 %
Improvement, easily obtained, is never considered

marginal and | believe the same viewpoint should prevail in
software engineering”

But...

® Some performance relevant Design Decisions e.qg.

o Data-Centric approach (tends to be easier to
optimize, but harder to start for newcomers)
VS.
strict OO design with data hidden in objects, and all
algorithms working on the data in the object interface
(better encapsulation --> easier for newcomers),

o Supported Platforms,
need to be done early on.

® However, for big chunks of the code performance
usually is not critical, so a defensive programming style
IS better.

Design Patterns

Lightwelight Pattern

« See “Design Patterns” by Gamma et al. 37" printing, p. 195, 207

« Sometimes one wants to have the full flexibility of objects, but using
full objects would be prohibitive to use, e.g. glyphs in an editor, that
are simply too numerous.

 |dea of lightweight Pattern:

- If objects there are so many objects, many may have similar
values for their members, e.g. many glyphs in an editor will
have the same character, text size, font etc.

- Now instead of creating the same objects over and over, return
just a reference to some element of a flyweight pool.

Before Usage of Flyweight

Glyph (e.g. Character)

Glyph (e.g. Character) Textsize, Font,

Textsize, Font,

Creates the Need to Manage

» |f someone changes e.g. the font type, the function has to check, if
there is a flyweight with appropriate properties or create new flyweight
In the pool.

« Some properties of an object may not be storable in the flyweight,
e.g. the position of a glyph. This has to be managed by the object
handling the reference, e.g. the row, which should give position
information to the glyph, when it is drawn.

Proxy

« Also known as surrogate, because

it stands in place of something.

- e.g. in a text editor instead of a picture, that takes uses a lot of
memory, there maybe just a box. If you actually want to see
the picture it is loaded on demand.

- e.g. instead of loading data from a file, there maybe a Proxy,
that caches recently used values and returns them, when
asked. Only when the value is new, it loads from the file.

Lazy Copy

» |If you copy a large object, e.g. a long string, and you are not sure you
ever modify it, you may just use a proxy with a pointer to the original
string.

* That one of course needs to know, that its value is referenced by
some other object... — Reference Counting, shared ptr ...

Resource Managing Objects

* In general it is useful to have resources like memory, database
accesses etc. managed by objects, that make sure, that the resource
Is freed, after it isn't used anymore.

B o o

Otherwise forward requests; - if Count goes to Zero, free
Resource

- may check permission
- may cache stuff

Adapter/Wrapper

® |[nterface an existing class with an Interface, that doesn't
match your requirements.

You | ——>

SpecificRequest()

Either (private) inheritance
or composition (can be a
"reference” to Adaptee).

SpecificRequest()

Consequences

® Using (private) inheritance ("Class Adapter").

o Adapts to a concrete class.

o Possibility to override some behaviour.

o Introduces ONE object, no additional pointer
indirection needed.

® Using composition ("Object Adapter")
o Easier to use various subclasses of Adaptee.
o Less trivial to modify behavour of Adaptee

Yc_>u Shape

Visualize()

> Circle
> aShapesVisuatiza Vo0

Bridge

® Decoupling of Abstraction and Implementation.

Implementor

Abstraction

Operation()

]

RefinedAbstraction

Operationimp()

ConclmplA ConclmpliB

Operationimp() Operationimp()

Example

® Possibility to use factory method to decide at run time
on specific implementation.

Window

DrawText()

]

lconWindow

Use inherited methods to
access Platform
dependent functionality.

= WVindowImp

DevDrawText()

XWindowImp PMWindowlmp

DevDrawText()
[Use platfrom
dependent
commands...]

DevDrawText()

Consequences

® For supporting a new type, you just need to write
another Concretelmplementor.

® You can introduce a new Concretelmplementor without
recompiling Abstraction.

® Improved extensibility, as you can work on the two
hierarchies separately.

® Better shielding of implementation details from clients.

Bridge's Relation to Adapter

® Adapter is usually used in cases, when you use an
existing library to adapt the interface, while Bridge is

used up-front to separate abstraction from
Implementation.

Maybe sometimes a policy approach can be used
instead of a bridge, if you need flexibility only at compile
time rather than run-time, e.g. in the example you
iInstantiate the abstract hierarchy with template
parameters of platform dependent objects.

Visitor

Assume you have an array of pointers to a Base class,
e.g. "Node" (some statement handled by a compiler).

Assume there are really specific Nodes, e.g.

"Assignment Node", "VariableRefNode", ...

that are too different to handle some functionality the

same way.

--> First Ansatz: Common Base Class with virtual

function, overwrite the function in every derived class..

but:

o Adding a new operation means, you have to change
every Derived™* class (assuming common Base
class function doesn't suffice.)

o Algorithm is scattered over many files, which makes
it hard to keep complete overview.

* %

® Big projects often are divided in many packages with
different access rules.
o -->changing lots of classes in potentially different
packages can annoy a lot of people.

Keep Control Over New Algorithm in One File
You >

You can add new
algorithms, e.g. a
TypeChecking Visitor
by only creating a new
green class.

\/

Object ‘
Structure v->visitConcElementA
(this)

Consequences

® \Visiting makes adding new operations easy.
It accumulates related behaviour in one file.

® \Visitors can accumulate state/gather information
during visiting.

® Adding new ConcreteElement classes is hard. If one
additional concrete element class is added, all visitors
have to be updated, e.g. in this case the information is
spread across many files.

® Visitors may break encapsulation, as they may have
to act intrusively on the ConcreteElements.

