Application development with
relational and non-relational databases

Mario Lasshig
European Organization for Nuclear Research (CERN)

mario.lassnig@cern.ch

mailto:mario.lassnig@cern.ch

About me

e Software Engineer

* Data Management & Analytics for the ATLAS, CERN, 2006-ongoing
* Automotive navigation, AIT Vienna, 2004-2006
* Avionics for autonomous robots, Austrian Space Forum, 2008-ongoing

e Education
e Cryptography (Undergrad)
e Graph theory (Master’s)
» Multivariate statistics and machine learning (PhD)

* Largest 24/7 database built yet
* 3+ billion rows
* 30’000 IOPS

2016-09-01 GridKa School — Relational and non-relational databases

About this course

* For every topic
1. We will do some theory
2. We will do a hands-on session

* Please don’t blindly copy and paste the session codes from the wiki
during the hands-on sessions; there’ll be exercises later where you’ll
have to use what you’ve learned!

Please interrupt me whenever necessary!

2016-09-01 GridKa School — Relational and non-relational databases

Part | — Introduction

e Relational primer
* Non-relational primer

e Data models

CAP Theorem

It is impossible for a distributed computer system to simultaneously
provide all three of the following guarantees [Brewer, 2000]

All clients always see the same data All clients can always read and write
Consistency Availability

File systems, single-instance databases, ...

Choose two.

Distributed databases Web caching, DNS, ...

Partition tolerance
The data can be split across the system

2016-09-01 GridKa School — Relational and non-relational databases

ACID and BASE

ACID BASE
* Atomicity * Basically available
All or nothing operations More often than not
* Consistency * Soft state
Always valid state Data might be lost
* |solation * Eventually consistent
Operations can be serialised Might return old data
* Durability

Data is never lost

2016-09-01 GridKa School — Relational and non-relational databases

So what is this NoSQL thing?

e Carlo Strozzi, 1998

 Term invented for a relational database without a SQL interface

* Term re-coined 2009 by last.fm
* At an open-source distributed databases workshop
* Deal with the exponential increase in storage requirements

* Improve programmer productivity

* Relational model might not map well to application native data structures
* Use non-relational stores instead as application backend

* Improve performance for “web-scale” applications
* Remember the CAP theorem
* There is no free lunch

2016-09-01 GridKa School — Relational and non-relational databases

Types of databases

* Row Stores
* Oracle, PostgreSQL, MySQL, SQLlite, ...

* Column Stores
* Hbase, Cassandra, Hypertable, MonetDB ...

 Document Stores / Data Structure Stores
* ElasticSearch, MongoDB, CouchDB, Redis, PostgreSQL ...

» Key/Value Stores
* Dynamo, Riak, LevelDB, BerkeleyDB, Kyoto, ...

* Graph Stores
* Neodj, Titan, Hypergraph, ...

* Multimodel Stores
* ArangoDB, CortexDB, ...

* Object Stores
* Versant, ...

* Many actually have overlapping concepts
* Get confused here: http://nosql-database.org/

2016-09-01 GridKa School — Relational and non-relational databases

Relational
Non-relational

http://nosql-database.org/

Relational model

* Proposed by Edgar F Codd, 1969

* Concept: Relations Tuples Attributes
* DBMS: Table Row Column
Relation . Hypothetical Relational Database Model
\ PublD Publisher PubAddress
< 03-4472822 | Random House 123 4th Street, New York H
04-7733203 | Wiley and Sons 45 Lincoln Bivd, Chicago Att n b ute
03-4859223 | O'Heilly Press 77 Boston Ave, Cambridge
03-3920886 | City Lights Books | 99 Market, San Francisco
AuthorlD AuthorMName AuthorBDay
345-28-2938 | Haile Selassie 14-Aug-92
392-48-9965 | Joe Blow 14-Mar-15 <
454-22-4012 | Sally Hemmings 12-Sept-70
663-58-1254 | Hannah Arendt 12-Mar-06
ISEN AuthorlD PublD Date Title
1-34532-482-1 345-28-2938 | 03-4472822 1990 Caold Fusion for Dummies
1-38482-295-1 392-48-9965 | 04-7733903 1985 Macrame and Straw Tying
2-35921-485-4 454-22-4012 03-4859223 1952 Fluid Dynamics of Aquaducts
1-38278-293-4 fG63-59-1254 | 03-39208B86 1967 Beads, Baskets & Revolution

2016-09-01

Tuple

http://www.ibm.com/developerworks/library/x-matters8/relat.gif

GridKa School — Relational and non-relational databases

9

Structured Query Language

* Proposed by Edgar F Codd, 1970

* Interaction with DBMS using declarative programming language
* ANSI/ISO Standard since 1986

* Ess Que Ell? Sequel?

CREATE TABLE table name;

SELECT column name FROM table name;

INSERT INTO table name (column name) VALUES (value);
UPDATE table name SET column name = value;

DELETE FROM table name;

DROP TABLE table name;

2016-09-01 GridKa School — Relational and non-relational databases 10

Row Stores

Fach Customer

Customer

cFirstMame
clastMame
cPhone
cStroot
cZipCode

* one-to-one
* one-to-many

Your classic RDBMS

Physically stores data row-by-row

°* many-to-many

Customer 4

places Zoro of more Orders Orders
u-. ! custiD | orderDate
" ! Order 5678 | 14-JUL-2003
11 places » . | orderDate 9012 | 14-JUL-2002
\ - soldBy 5678 | 18-JUL-2003
" "\‘ 5678 20-JUL-2003
4 L

2016-09-01

one and only one 4 is placed by 4 Order 4 Each o

Easy joining of data between tables

OrderLines

custlD orderDate

UpC

copled values

5678
9012
Q012
5678
5678
5678
26/8

14-JUL-2003
T4-JUL-2003
14-JUL-2003
18-JUL-2003
20-JUL-2003
20-JUL-2003
20-JUL-2003

51820 33622
51820 33622
11373 24793
81809 73555
51820 33622
B1BOD 73555
818106359

Normalization procedures to reduce duplicate data and complexity

Not so good for aggregation (RDBMS vendors compete here)

copled values

Products

upc

L 51820 33622

42877 34040
81809 73555
11373 24793
81810 63591

http://www.tomjewett.com/dbdesign/dbdesign.php?page=manymany.php

GridKa School — Relational and non-relational databases

11

Column Stores (the most confusing of all)

* Many applications do not need relations, think analytics...

* Row-based systems like traditional relational databases are ill-suited

for aggregation queries
* Things like SUM/AVG of a column?
* Needs to read full row unnecessarily

* Physical layout of data column-wise instead

» Saves IO and improves compression, facilitates parallel 10

* Makes joins between columns harder

* Organize columns in column-groups/families to save joins

* Most column stores have -
native support for column-families

| coLumn

FAMILIES |

empid name

city

designation

salary

1 raju

hyderabad

manager

50,000

2 ravi

chennai

sr.engineer

30,000

3 rajesh

delhi

jr.engineer

25,000

\

http://www.tutorialspoint.com/hbase/images/table.jpg

2016-09-01 GridKa School — Relational and non-relational databases

12

Key/Value Stores

* Hashmap for efficient insert and retrieval of data
* You might know this as associative array, or dictionary, or hashtable

» Keys and value usually are bytestreams, but practically just strings

e Usually there are some performance guarantees, via options like
* Sorted keys
* Length restrictions
* Hash functions

* Simple and easy to use
 Either as compile-time library

e Or as server, usually via wrapped
native protocols, or via REST

Key 4 Value 4
* First one: dbm, 1979 = S

2016-09-01 GridKa School — Relational and non-relational databases 13

Document Stores / Data Structure Stores

* Basically key/value stores, with the added twist that the store knows
something about the internal structure of the value

* \ery easy to use as backend for application
* When people think NoSQL, this is usually what they mean
* This flexibility comes at a price though — we’ll discuss this later

{
_id: <ObjectIdil>,
username: "123xyz",
contact: { b
phone . "123-456-7890") > i{‘n»bedde;;' sub-
email: "xyz@example.com” } ©ocument
h
access: { \
level: 5, Embedded sub-
group: "dev” document
} /
b

http://docs.mongodb.org/v3.0/_images/data-model-denormalized.png

2016-09-01 GridKa School — Relational and non-relational databases 14

Graph Stores

* In the relational model actual n-to-n relations are cumbersome

Index lookup on Person.id

Index lookup on Companyid Index lookup on Company.name
! Person ! !
! Company
1
| | 1d | Name Works In ! ,
I Id | HName I
I 1+ l_a_rg.r Fage Personld | Companyld | Since ;
1 — e e =w=1 | Google 1
I | 2+ Joshua Bloch e | 1 : (._--4995-----:::__---" 0g |
I e : — 2 | Oracle !
: 3 | Brian Goetz i 11 <€ - 7T72001 I
1 I
1 I
N | .. 3 2! 2010
\ - N '
v

http://blog.octo.com/wp-content/uploads/2012/07/RequestinSQL.png

2016-09-01 GridKa School — Relational and non-relational databases 15

Graph Stores

* Make relations first-class citizens
* Physical layout optimised for “distance” between data points

* Leads to easy & fast traversal for graph database engine

Index lookup to find root Node

Person 1 Traverse relation Company 1 I

Person 3

I MName - Brian

Goetz

s

Since 2010

vvvvvvvvvvvvvvv W

Name - Oracle]

Name : Joshua
Bloch

http://blog.octo.com/wp-content/uploads/2012/07/RequestinGraph.png

2016-09-01 GridKa School — Relational and non-relational databases 16

Hands-on session 1

* Create, read, update, delete data
 Using C/C++ and Python

* On
* PostgreSQL (relational — row-based)
* MonetDB (relational — column-based)
* LevelDB (nonrelational — key/value)
* Redis (nonrelational — data structure)
* MongoDB (nonrelational — document)
* ElasticSearch (nonrelational — document)
* Neodj (nonrelational — graph)

https://wiki.scc.kit.edu/gridkaschool/index.php/Relational and Non-relational Databases

2016-09-01 GridKa School — Relational and non-relational databases

https://wiki.scc.kit.edu/gridkaschool/index.php/Relational_and_Non-relational_Databases

Part Il — Fun and profit

* Query plans and performance tuning
* Transactional safety in multi-threaded environments
e Sparse metadata

* Competitive locking and selection

Query plans

* The single most important thing you learn today
* You want to avoid going to disk, to reduce number of IOPS and CPU

* In order of “excessiveness”
 FULL TABLE SCAN

PARTITION SCAN

INDEX RANGE SCAN

PARTITION INDEX RANGE SCAN

INDEX UNIQUE SCAN

PARTITION INDEX UNIQUE SCAN

* Not all FULL TABLE SCANSs are bad

* If you need to retrieve a lot of data, and it is indexed, you will get random 10
on the disk — prefer serial scan (FULL, PARTITION) in such cases

* If your data is of low cardinality (few values, lots of rows), then indexes will
not help

Query plans — How to optimize?

* Understand EXPLAIN PLAN statement, then decide

* Partitions
* Physical separation of data
* Costly to introduce afterwards (usually requires schema migration)

* Indexes
* Either global or partition local
* Log-n access to data Branch Blocks
[Di]Lu[Rh]
List Range Hash l + + l
Partitioning Partitioning Partitioning
- 5 = §l.|a
E;ﬁft?glﬁs He?lin____,__,.---“ .:_:rl;ru:;ywaggf-——‘ m|o|o w|x|x =lo o o @
Virginia | 1
Florida [z 2 — |- hi
'gela?t Sales Region __—] garﬁn and Eg
alifornia pr
ﬁfﬁéﬁ” L_r__,..,-f-"“ I_,,__,.-—-""" h4 Lesf Blocks v 1 l +
Central Sales Region __—" Mayand __ — ol (= =l =A== alolo|o =] =)
llinois June = oligolo = = === |E o=
Texas L | -h%%%%-h%ggaa—h%%%§§+%%%3—h§§§g%+
issoun [e JEE e e e o e e
Julyand —___— i E e B e a A e E R E s EE
August | 12|19 |3|E|2|E|E| (2|2|2|2|2] (8|8 88| |[£|E|8|E| &
/—P_'

https://docs.oracle.com/cd/B19306_01/server.102/b14220/img/cncpt158.gif http://www.mattfleming.com/files/images/example.gif

2016-09-01 GridKa School — Relational and non-relational databases

20

. PostgreSQL prohibits this by design
Transactional safety

* In multi-threaded environments concurrent access to’the same data
is likely — this can cause serious problems

. Isolation Level Dirty Read Nonrepeatable Read Phantom Read
* Dirty Read

Read uncommitted Possible Possible Possible

Read committed Not possible Possible Possible

» Read data by uncommitted transaction

Repeatable read | Mot possible | Mot possible Possible

Serializable Mot possible Mot possible Mot possible

* Non-repeatable Read

* Reads previously read data again, but it has changed in the meantime by
another transaction

* Phantom Read
* Repeated query of the same conditions yields different results due to
intermediate other transaction
* Different transaction isolation levels provide safeguards
* By locking of rows and thus making other transactions wait
* The more you lock, the slower you are
e Can lead to deadlocks if careless — always lock rows in the same order!

2016-09-01 GridKa School — Relational and non-relational databases 21

Sparse metadata

* Think tagging/labelling datasets

* Difficult problem in relational model

» Keep extra columns or implement a relational key-value store
* Extra columns are bad for physical disk layout
 Relational key-value store requires lots of joins — not good for CPU

* Will you ever search on metadata?

Store the metadata as a JSON encoded string in a single column

* Yes - Many different kinds of metadata?
Maintain a separate metadata table, with pre-created columns
* Yes - Use the built-in JSON support of Oracle or PostgreSQL,
or as a last resort: use a non-relational database

* There is some really bad advice on StackOverflow promoting a
“generic” approach to metadata — please don’t do this

Competitive locking

* Many applications have the following use case
* Many processes write something in a queue — the “backlog” of things to do
* Many processes read from that queue — process them in parallel

* Scheduling problem
* Do things in order? Prioritise certain things?
* How to avoid that multiple workers process the same things?

* Repeat after me: a database is not a queuing system
* There are two potential solutions — each with their own drawback

» Database-level (row read lock, easy):
BEGIN; SELECT row FOR UPDATE ; COMMIT/ROLLBACK

 Application-level (no lock, complex)
* When selecting work, compute row-hash, convert, modulo #workers
* Only work on rows that match worker-id

2016-09-01 GridKa School — Relational and non-relational databases 23

Part Ill — Survival

e Distributed transactions
* SQL injection

e Application-level woes

Distributed transactions

* Sometimes you really need two different data stores
* Sometimes you need to be consistent between both

* Consensus protocols are needed
* Two-phase commit
* Paxos

* Needs operational support by database (pending writes)
* But you still have to code it in the application

Transaction Resource
Coordinator Managers
- Reque u
o - =
n St10-Prepare o
- L
Prepare o o
Phase - 4 -
o prepar®]
o1 -
O]
- .
O = u
o Commit o
n n
Commit - -
Phase n |
o poné o
O O
- -
| L]
Figure 1 - The two-phase commit protocol

http://gemsres.com/photos/story/res/43755/figl.jpg

2016-09-01 GridKa School — Relational and non-relational databases

25

SQL Injection

HI, THIS 1S OH, DEAR = DID HE | DID YOU REALLY WELL, WE'VE LOST THIS

YOUR SON'S SCHOOL. | BREAK SOMETHING? | NAME YOUR SON YEAR'S STUDENT RECORDS.
WE'RE HAVING SOME N H WAY Robert'); DROP T HOPE YOURE HAPPY.

(OMPUTER TROUBLE. / TABLE Students;—- 7 €|

R AND T HOPE

, ~OH. YES UTTLE ~~ YOUVE LEARNED

BOBBY TABLES, TO SANMIZE YOUR

" B ﬂ m WE CALL HIM. DATABASE INPUTS,

https://xked.com/327/

2016-09-01 GridKa School — Relational and non-relational databases 26

SQL Injection

https://hackadaycom.files.wordpress.com/2014/04/18mpenleoksg8jpg.jpg?w=636

2016-09-01 GridKa School — Relational and non-relational databases 27

Application level woes

Handling sessions — this will be your major source of pain
* Connection —Session — Transaction

Most databases only have a limited number of available connections

Some pay with CPU for logons, others with RAM for sessions, etc...

E.g, have to channel 100 concurrent transactions across 10 connections
 SessionPooling/QueuePool — every language/database has it’s own idea

* Use an abstraction, don’t code this yourself

* SQLAIchemy, Django (Python)
* Also come with an Object-Relational Mapper
* Makes relations into transparent Python objects

* CodeSynthesisODB (C++)
* Also supports BOOST datatypes(!)

2016-09-01 GridKa School — Relational and non-relational databases 28

Part IV —The challenge

Challenge description

* Write a Twitter clone before time runs out — 18:00
* Choose any database you like (after you thought about the design!)

* Stick to the following UX — you will write four programs
* Inserter: periodically inserts new random tweet into the database
 Latest: periodically prints the latest 10 tweets
* Random: periodically prints random 5 tweets

* Stats: periodically displays statistics
* How many tweets were added in the last minute by each user and overall (insertion rate)
* How often a given tweet was displayed (popularity of a particular tweet)

e Start 10 inserter, 10 latest, 10 random, 1 stats

* Use this random sentence generator (pip install loremipsum)
import loremipsum
loremipsum.generate sentence ()

* When stuck, ask me —when done, show me! Good luck and have fun!

2016-09-01 GridKa School — Relational and non-relational databases

30

Application development with
relational and non-relational databases

Mario Lasshig
European Organization for Nuclear Research (CERN)

mario.lassnig@cern.ch

mailto:mario.lassnig@cern.ch

i

www.cern.ch

