HPSSFS-FUSE Administrator’s Guide file:///C:/Users/IBM_ADMIN/Documents/VFS/admin_guide.html

HPSSFS-FUSE Administrator’s Guide

Michael Theall
<mtheall@us.ibm.com>

version 600, 2014-11-12

Table of Contents
1. Overview
2. Availability

2.1. Prerequisites
3. Concepts
3.1. HPSS and the Nature of Hierarchical Storage
3.2. Architecture
3.3. How It Works
3.4. Supported Functionality and Limitations
4. Tuning & Troubleshooting
4.1. Expectations
4.2. Testing Procedures
4.3. Tuning Concepts
4.4. Troubleshooting
5. Unprivileged Mounts

6. Uses
6.1. General
6.2. SAMBA
6.3. NFS
6.4. Secure FTP
6.5. Apache
7. Mount Options
7.1. Credentials
7.2. HPSS Options
7.3. Checksum Options
7.4. Other HPSSFS-FUSE Options
7.5. FUSE Options
7.6. Kernel Options
8. Extensions
8.1. ioctl(2) Interface
8.2. fallocate(2)
8.3. Linux Extended Attributes
8.4. Checksum
8.5. Auto Purge Lock
9. References
10. Trademarks

1. Overview

The High Performance Storage System™ File System FUSE (HPSSFS-FUSE) interface provides
users with a standard POSIX®) filesystem view of HPSS™ files. Filesystem in Userspace (FUSE)
is a mechanism that allows virtual filesystems to be implemented in userspace.

The HPSSFS-FUSE interface is supported only on Red Hat® Enterprise Linux® (RHEL®) [It

1 of 39 05/04/2015 12:39 PM

HPSSFS-FUSE Administrator’s Guide file:///C:/Users/IBM_ADMIN/Documents/VFS/admin_guide.html

enables HPSS to function as an additional supported filesystem type for Linux users. It allows
users to access HPSS-resident files with standard POSIX semantics employed by local Linux
filesystems, such as ext3 and network filesystems such as NFS. Linux users can mount an HPSS
directory, traverse the directory structure, and access files as though operating on a local Linux
filesystem. Access is achieved by means of POSIX function calls, such as open (2), read (2),
write (2), and UNIX® commands such as cp (1) . Like NFS, HPSSFS-FUSE does not require
local storage resources, but is rather a convenient interface to HPSS.

The HPSSFS-FUSE interface enables existing software to access HPSS files without
modification. For example, agent software, such as SAMBA™, Secure FTP, Apache®, and even
native Linux NFS may be set up to access HPSS files using the HPSSFS-FUSE interface. Thus,
the HPSSFS-FUSE interface becomes a means to utilize a wide variety of agents for local and
remote network-connected users. Multiple agents may be employed, and even multiple
instances of the same agent. For example, a site may employ several agent computers providing
NFS and several others providing SAMBA. However, in most situations, the use of multiple
agent computers will not be necessary.

Thus, the HPSSFS-FUSE interface serves as a high-performance, virtually-local interface for
trusted Linux client nodes, such as those in a high-performance computational cluster. At the
same time, it can serve as a convenient means of extending HPSS access to users outside of the
main cluster, with security performed by agent software.

The HPSSFS-FUSE interface does not change the nature of the underlying HPSS hierarchical
storage management software. Most HPSS sites are set up to migrate less recently used files to
tape. Although the HPSSFS-FUSE interface does employ local caching and readahead logic to
enhance performance, the overall operational concept for the system must take into account the
latency of accessing files from tape. On the other hand, HPSS offers optional SAN enablement,
referred to in HPSS documentation as HPSS 3rd Party SAN (SAN3P). SAN3P enables data to
move between clients and HPSS disk without passing through an intermediate computer, but
under the control of HPSS. SAN3P therefore can provide significant throughput advantages for
sequential transfer of data between clients and HPSS disk.

This document is intended to provide administrators and sophisticated ("power") users with
information on the installation, tuning, and use of HPSSFS-FUSE. Limitations as well as
features of the HPSSFS-FUSE interface are explained so that existing best practices can be
employed and new best practices discovered.

2. Availability

HPSSFS-FUSE is available as a separate package from HPSS. It can be obtained from your
HPSS support representative.

2.1. Prerequisites

HPSSFS-FUSE requires the following software:
e libfuse >=2.8.3
e Linux kernel >= 2.6.31 with FUSE kernel module

e HPSS 7.3.3 or HPSS >= 7.4.1 [2]

2 of 39 05/04/2015 12:39 PM

HPSSFS-FUSE Administrator’s Guide file:///C:/Users/IBM_ADMIN/Documents/VES/admin_guide.html

3 of 39

3. Concepts

At a high level, the HPSSFS-FUSE interface is very simple and straightforward. Almost all
POSIX-based operations one can perform on a Linux filesystem can also be executed on an
HPSSFS-FUSE-mounted filesystem. Even so, there are some exceptions. This section covers
characteristics about HPSSFS-FUSE that should be understood by those considering its use in
their environment.

3.1. HPSS and the Nature of Hierarchical Storage

While readers of this document are presumed to be familiar with HPSS, we will review here
some HPSS concepts that are particularly relevant to the HPSSFS-FUSE interface. HPSS is a
hierarchical storage management (HSM) software designed to manage and access petabytes of
data at high data rates. HPSS is most cost effective for archives larger than 10PB. While
appearing to the user as a disk filesystem, HPSS manages the life cycle of data by moving
inactive data to tape and retrieving it the next time it is referenced.

HPSS is a distributed solution with file attributes stored on the Core Server, data stored on
Mover systems, and HPSSFS-FUSE applications running on client nodes, among other client
interfaces. The cluster aspect of HPSS combines the power of multiple computer nodes into a
single, integrated storage system. The computers that comprise the HPSS platform may be of
different makes and models, yet the storage system appears to its clients as a single storage
service with a unified common name space.

When users access HPSS via the HPSSFS-FUSE interface or one of the other HPSS interfaces
such as FTP or the Client API, they are presented with a UNIX-like filesystem view of their data.
In addition to files, HPSS supports directories, symbolic and hard links, and attributes
compatible with any modern UNIX filesystem. Unlike a conventional disk-based filesystem,
however, HPSS must deal with the latency of accessing data on both disk and tape. Access to
data may be delayed as tapes must be mounted and queued with other tape drive/library
activities. Data is stored sequentially on tape media, which is different from disk-based storage
that provides random access to data. While interfaces may provide conveniences and hide
certain aspects of this behavior, fundamentally, the system is an HSM and those using it must
understand the qualities and limitations of an HSM.

Linux provides filesystem caches for file attributes and data blocks to improve performance by
temporarily storing requested information in kernel buffers. This improves performance for
multiple requests of the same information or, in the case of readahead logic, sequential access to
file data. The expense is a weak coherency between multiple clients and mount points.
Performance gains are dependent upon configuring memory resources based on number of
threads, concurrent file access, file sizes, and available system memory.

Like with other HPSS client interfaces, the configuration of HPSS is critical for optimal
performance. Configuring HPSS with correct Storage Classes, Hierarchies, Classes of Service,
filesets, junctions, and providing appropriate mount points will determine performance through
the HPSSFS-FUSE interface. Generally, different Classes of Service are created in HPSS to
balance performance with different storage media characteristics and different file sizes.
Applications must understand where in the HPSS hierarchy files in different Classes of Service
are located and expect different performance. For instance, files that have to be staged from
tape levels of a hierarchy will encounter more latency compared to files at a disk level. Storage
efficiency within HPSS is determined by Storage Class segment size and the typical file sizes
stored. It is also determined by the heirarchy makeup. Applications must consider this when

05/04/2015 12:39 PM

HPSSFS-FUSE Administrator’s Guide file:///C:/Users/IBM_ADMIN/Documents/VFS/admin_guide.html

storing files using the HPSSFS-FUSE interface.

So, how does this affect end users? One example is using the common UNIX command

grep (1).On alocal Linux filesystem, such a command can be invoked recursively on a
directory tree with little to no concern. However, when used on an HPSSFS-FUSE mount, such
a command is unaware of the current state of the files' contents and will proceed to stage any
file that is not stored in HPSS disk cache. If a user’s command searches through hundreds or
thousands of files that must be staged from tape, not only will it potentially take a very long time
for the command to complete for the user, but there can be a detrimental effect on other users
of the HPSS system as tape drives are kept busy servicing this one command. That is why it is
important for administrators and end users to understand how HPSSFS-FUSE works.
Remember the following when planning to use or introduce HPSSFS-FUSE to a site
environment:

¢ File attributes are readily available, but file contents may not be.

e HPSSFS-FUSE has the look and feel of a filesystem, but it is really an interface to HPSS,
which is an HSM.

3.2. Architecture

HPSSFS-FUSE is glueware that sits between HPSS and FUSE. It uses FUSE to represent HPSS
as a virtual filesystem.

Figure 1 shows the Linux client software. This software is separated into userspace and kernel.
The userspace is shown containing three types of client applications: a user application, a user
shell such as ksh (1) or bash (1), and agent software such as an NFS or SAMBA server. The
VES is the Linux Virtual Filesystem Switch, which forwards filesystem access to the appropriate
filesystem drivers, such as FUSE, NFS, and ext3. HPSSFS-FUSE retrieves filesystem requests
from the FUSE kernel module via libfuse, and forwards them to HPSS using the HPSS Client
API.

The HPSS Client API is both a user interface in its own right and a building block from which
other interfaces are created. The HPSS Client API supports the separation of command and data
paths. The command path is usually a TCP/IP path, and the data path may be a separate
TCP/IP data path, or it may be implemented as a SAN such as fibre channel. HPSS
documentation refers to the SAN option as SAN3P (SAN 3rd Party), where the client application
is the 3rd party performing the SAN I/O. HPSSFS-FUSE is able to use SAN3P transfers in order
to take advantage of the direct client-to-disk data transfer mechanism.

SAN3P

‘Q) There is a security vulnerability associated with the use of SAN3P. If a user
is root on a machine which has access to the SAN (e.g. a client machine),
then that user has the potential to access or destroy fiber-channel
connected disk storage. Two areas of concern:

1. Verification that only authorized users (usually limited to only root or
hpss) are granted read and write access to these resources.

2. HPSS administrators should be aware that machines, possibly owned
or managed by other groups, which are added to the SAN to facilitate
the use of SAN3P transfers will have access to all data on disk and
tape resources. If those systems are compromised, or if there are

4 of 39 05/04/2015 12:39 PM

HPSSFS-FUSE Administrator’s Guide

5 of 39

individuals authorized for system privileges on those particular
machines, but not necessarily authorized for HPSS administrative
access, there is the potential for access and/or damage to HPSS data.
These are inherent limitations of SAN implementations that have not
yet been addressed by the industry and cannot be remedied by HPSS.

User applications
(including iIRODS and
FileMet®) use
HPSSFS-FUSE
directly

ser shell

User program

[gibe |

Agent server

[gibc |

glibc

HPSSF5-FUS

WVES
Control
Data B HPSS HPSS
6 Mover Core

SAMIP

Figure 1. HPSSFS-FUSE Components

Based on experience in the field, we recommend that separate HPSSFS-FUSE mount points
exist for each major application that resides on top of it. When used in a gateway configuration
using agent software, there is no requirement for separate mount points, but for performance or
load-balancing it may be necessary. The separate mount points allow for easier control and
troubleshooting of the system.

3.3. How It Works

Here is an example of what happens when a user tries to open a file:

1. Application issues an open (2) call on a file.

05/04/2015 12:39 PM

file:///C:/Users/IBM_ADMIN/Documents/VFS/admin_guide.html

HPSSFS-FUSE Administrator’s Guide file:///C:/Users/IBM_ADMIN/Documents/VFS/admin_guide.html

2. The Linux VFS provides common filesystem functionality, then passes control to the
FUSE kernel module.

3. libfuse retrieves the request from the FUSE kernel module, and calls a callback function in

HPS
4. HPS

SFS-FUSE to service the request.
SFS-FUSE uses the HPSS Client API to open the file.

5. The HPSS Core Server performs the file open. If permissions, path, and attributes are
valid, the file is opened.

6. The HPSS Client API receives a response from the HPSS Core Server indicating success or

failu
7. HPS

re. This status is returned to HPSSFS-FUSE.
SFS-FUSE replies to the FUSE kernel module via libfuse.

8. The FUSE kernel module returns the information back to the Linux VFS.

9. The Linux VFS returns the system call.

10. Application receives status from the system call and acts accordingly.

3.4. Sup

]

ported Functionality and Limitations

Mount Options
The following references HPSSFS-FUSE mount options.

e Most HSM users access file data in sequential order. The HPSSFS-FUSE interface
implements a sequential readahead algorithm to increase the probability that the next
requested read will be in the HPSSFS-FUSE buffer cache. The following should be
understood about this algorithm:

(@]

For performance reasons, when files are read sequentially, HPSSFS-FUSE will read
the next sequential portion of a file before an application requests it. This helps
reduce the read latency to the application. The size of the portion ranges from 128KB
up to stream megabytes. It starts out at 128KB, and then it doubles for each
successive read, with the maximum readahead window of stream megabytes. If the
read requests are not sequential, the readahead is not performed. If the application
read requests do not read the entire readahead buffer, the readahead buffer size will
remain the same.

The default stream value is 8MB. This means the readahead algorithm will consume
8MB for every open file. The system RAM should be sized for the maximum
readahead buffersize multiplied by the number of concurrent files being read.

For maximizing performance, the application should issue sequential read requests
that are equal to the maximum readahead buffer size.

Files that are opened with 0_SYNC or O_DIRECT will not use buffered 1/0, and
therefore will not use the readahead algorithm.

Using a stream option with the value 0 will cause all open files to use unbuffered
I/0, and therefore will not use the readahead algorithm.

A writeback algorithm is in place similar to the readahead algorithm. It shares the
same buffer with the readahead algorithm.

e The HPSS maximum for 10,000 storage segments applies. When storing a file using

6 of 39

05/04/2015 12:39 PM

HPSSFS-FUSE Administrator’s Guide file:///C:/Users/IBM_ADMIN/Documents/VFS/admin_guide.html

7 of 39

HPSSFS-FUSE, use a Storage Class that supports a storage segments size that can
accommodate the intended size of the file. The Storage Class used is dependent on the
mount option cos=ID and/or the fileset where the file is being stored. An additional
consideration is the mount option maxsegsz.

The HPSS maximum for 2,000 fragments applies. Fragments are sections of data
separated by a hole where an application has not written data. Using the 1seek (2)
system call, an application can skip around in a file to write data at various offsets. HPSS
does not initialize or store data for these holes; metadata is maintained to identify the
holes. When a file reads at an offset that is a hole, the data values are binary zero.

The Linux df (1) command statistics represent the entire Class of Service (COS) statistics.
The sum of all Storage Classes in the COS Hierarchy is reported. The reported free space
may not represent the amount of space that can be written, especially when there are
multiple levels in the Hierarchy. A mount point may not even show up in the df (1) listing
if the total storage for its COS is 0 (e.g. a dummy default COS).

Security: There are no restrictions from the Core Server on which nodes can connect via
HPSSFS-FUSE. Any node that can install the HPSS Client API can access HPSS.

o HPSS provides a restricted user capability for blacklisting users based on User ID
from connecting to the system. This only affects which users can be used as the
principal for login credentials, so blacklisted users may still use HPSSFS-FUSE when
using the hpssfs principal. See "Restricting user access to HPSS" in the HPSS
Management Guide for more information.

o Keytabs are commonly used to facilitate establishment of HPSS credentials. It is
recommended to use a keytab for the hpssfs principal for use by HPSSFS-FUSE. This
keytab should be protected to prevent unauthorized access by unprivileged users.

ACL’s: HPSSFS-FUSE does not support ACL’s.

FIFO’s and other special devices: HPSS and therefore HPSSFS-FUSE does not support
named pipes (FIFO’s), character device files, and block devices; use a local filesystem for
these purposes.

Kernel caching and data buffering: The Linux kernel caches directory and file attributes.
This may prevent retrieving up-to-date attributes from HPSS that are updated by other
HPSS clients (including other HPSSFS-FUSE mounts on the same machine). Different
clients may receive different information based on what is cached and when changes are
made. The benefits of caching attributes and buffering data are to minimize latency to the
application by not waiting to retrieve data from HPSS. Direct I/O can be used to bypass
the data buffer cache, but every read and write will require transferring data from HPSS.
The attribute cache timeout is controlled by the attrtimeo mount option. The name cache
timeout is controlled by the entrytimeo mount option. These caches can be disabled by
setting their values to 0. This will increase coherency at the expense of performance.

The caching mechanisms help reduce latencies, but cause a weak coherency concerning
external applications.

The data buffering mechanisms help increase throughput, but at the expense of reduced
coherency. For transaction-sensitive applications where data written to HPSS using the
HPSSFS-FUSE interface requires guaranteed updates, the program must do one or more
of the following:

o Rely upon f£sync (2) to flush data buffers to HPSS.

o Open a file with the 0_syNC or 0_DIRECT flags to flush data on every write.

05/04/2015 12:39 PM

HPSSFS-FUSE Administrator’s Guide file:///C:/Users/IBM_ADMIN/Documents/VFS/admin_guide.html

8 of 39

o Rely on the return value from the cl1ose (2) function as indication of successfully
flushed data.

Otherwise, a successful return code from the write (2) system call is not a guarantee that
all data has been completely flushed to HPSS at that point in time. The application
programmer must balance the performance advantages of buffering versus the
requirements for data synchronization between their application and HPSS. This behavior
is consistent with the POSIX standard, and true of both local storage resources (e.g. disk
partitions) as well as remote storage such as HPSSFS-FUSE and NFS.

e The HPSSFS-FUSE Gateway is essentially a "store and forward" machine that should be
taken into consideration when sizing any Linux gateway computers.

e HPSSFS-FUSE supports a number of extensions to the POSIX library interface to enable
users to control specific HPSS attributes, such as setting the Class of Service (COS) value.
The list of extensions and how to use them is documented in the Extensions section.

4. Tuning & Troubleshooting

Like most systems, HPSSFS-FUSE will require tuning to allow users/applications to perform
optimally. The underlying HPSS configuration, network topology, and client systems can affect
performance and the operation of the system. This section covers the major tuning components
of HPSSFS-FUSE, what to look for when analyzing the performance of the system, and what
troubleshooting resources and procedures are available for the administrator to use in
diagnosing problems.

4.1. Expectations

Administrators and users should expect HPSSFS-FUSE to perform similarly to the HPSS Client
API. In some cases the performance may be better because of the kernel caching (namespace
attributes and file data), but in general the transaction and transfer performance will be in-line
with HPSS Client API because HPSSFS-FUSE uses the API for its interaction with HPSS.
Therefore, it is important to ensure that performance as measured by tools, such as the API
Example code, are consistent with baseline numbers documented during the deployment of the
system. The HPSS Test Plan and Results report or other similar testing should be reviewed and
compared with results measured against the current system. If the performance of the HPSS
Client API on the HPSSFS-FUSE machine is not up to expected rates, then correcting those
deficiencies should be addressed before focusing on HPSSFS-FUSE performance.

4.2. Testing Procedures

During the initial deployment of an HPSS system, the support representative conducts a
number of functional and performance tests on the system. These tests include procedures for
checking the client interfaces to be used at a given site, including HPSSFS-FUSE, if configured
at the time of the installation. The results from these tests are used as a baseline for comparing
performance of the system when changes are made to HPSS or the client environment, or when
troubleshooting a performance problem.

The first task is to repeat those same HPSSFS-FUSE tests to compare against the baseline
results. A high-level summary of some tests that might be exercised are outlined below:

¢ Directory listing of namespace.

05/04/2015 12:39 PM

HPSSFS-FUSE Administrator’s Guide file:///C:/Users/IBM_ADMIN/Documents/VFS/admin_guide.html

0 1s(1)
0 find (1)

e Simple file/directory operations.
0 mkdir (1)

O rmdir (1)

@)

touch (1)
O unlink (1)
omv(l)
o 1n(1)
© cd(1l)

Copy multiple groups of files into and out of HPSSFS-FUSE.

e Rerun the HPSSFS-FUSE performance tests to obtain new baseline results.

e Use a script to touch (1) numerous files in a directory, then perform an rm -rf * [3lat
the directory level to delete all the files created.

e Use a script to exercise HPSSFS-FUSE for an extended period (24-48 hours). This can be
as simple as copying files into the HPSSFS-FUSE mount point. Multiple copy operations
should be performed from a single script, and if possible, multiple clients should be used.

e Perform tar (1) and gzip (1) on files located in the HPSSFS-FUSE mount point.
e Perform dd (1) into and out of the HPSSFS-FUSE mount point.
e Use a basic C program which creates, opens, writes, and closes files.

e Use a basic C program which reads the previously created files. If possible, read
migrated/purged files (files on tape with no copy in the HPSS disk cache), to monitor how
HPSSFS-FUSE handles staging.

4.3. Tuning Concepts

4.3.1. What are we tuning?

How one plans to use HPSSFS-FUSE is key to what should be done to tune the system. Is the
usage primarily oriented to access the namespace and file attributes? Is the goal to optimize
data I/O? What file sizes are expected? Are there a few users or many? How is load balanced?
These and other questions need to be considered before starting the tuning process. If there are
divergent requirements, then multiple HPSSFS-FUSE mounts may be necessary to optimize a
particular access pattern.

Consider making the adjustments only when necessary. Likely, it will take some
experimentation to get the right set of options. If usage conditions or requirements change,
tuning options may need to be reevaluated and adjusted.

4.3.2. Configuring for efficient HPSS storage

HPSS stores portions of a file in what are called storage segments. Since each storage segment
has to be tracked, there is metadata created for each storage segment. To prevent individual
files from monopolizing HPSS metadata space, there is a maximum number of segments that

9 of 39 05/04/2015 12:39 PM

HPSSFS-FUSE Administrator’s Guide file:///C:/Users/IBM_ADMIN/Documents/VFS/admin_guide.html

10 of 39

HPSS will allow for each file (10,000 is the maximum). Another important aspect is if the
amount of data written to a storage segment is less than the storage segment size, the remaining
space cannot be used for anything else (it is wasted space). The size of a storage segment is
determined by the Class of Service (COS) being used and whether the mount option maxsegsz is
specified.

To help with usage patterns, HPSSFS-FUSE allows you to configure mount points for a specific
COS or to use the maximum segment size. By specifying a specific COS for a mount point, you
can have some control over the segment size allocation and which Storage Class will be used
when an application creates a file. The exception to this rule is if the file is created in a fileset. In
that case, the COS set for the fileset will be used instead of the mount option COS if it is not set
to NONE. The COS has an "Allocation Method" where you can choose either Fixed, Maximum,
or Variable. Using the correct allocation method will determine how efficiently HPSS stores a
file.

e Fixed usually will default to the minimum segment size for the Storage Class. This is most
efficient when the file sizes are typically less than or very near to the Storage Class
minimum segment size. It is least efficient when the file sizes are typically many multiples
of the minimum segment size and the difference between minimum segment size and
maximum segment size is large.

e Maximum will default to the maximum segment size for the Storage Class. This is most
efficient when the file sizes are typically close to or greater than the maximum segment
size. It is least efficient when the file sizes are typically very small because the maximum
segment size will be allocated and only a very small part of the segment will be used.

e Variable allows for a progression of larger segments for each segment. This method is
often referred to as Variable Length Segment Size (VLSS). It was introduced to help when
the file sizes vary greatly and the difference between the minimum and maximum segment
sizes for a Storage Class is large. With each successive storage segment allocated being
double the size of the previous (up to the maximum segment size), the efficiency is greatly
improved. There are fewer segments (minimizing the metadata overhead) and less wasted
space (versus the Maximum allocation method), which allows much larger files than using
the Fixed allocation method. To minimize the unused space in the last segment of the
Variable allocation method, the segment size is reduced to the smallest multiple of the
minimum segment size.

The top level Storage Class definition determines the actual minimum and maximum segment
sizes to be used. Configuring the mount point to a COS which uses a Storage Class that is
appropriate based on the sizes of the files to be created will greatly influence the HPSS
efficiency. The Storage Class will also greatly influence the allowable sizes of files that can be
stored. As indicated above, the Fixed allocation method will use the Storage Class minimum
segment size. This will limit the maximum file size to be the Storage Class minimum segment
size multiplied by the maximum number of Bitfile segments that HPSS can support.
HPSSFS-FUSE does support an override of using the Fixed allocation method minimum
segment size, however the override is to use the Storage Class maximum segment size (from one
extreme to the other).

HPSSFS-FUSE does allow an application to override the mount point specification for a COS.
The caveat is an extra system call has to be made to HPSSFS-FUSE by the application to
accomplish this. A limitation of using standard Linux applications (e.g. cp (1) command) is
they do not support setting the COS explicitly. Because of this, it is critical to understand
application file creation patterns and setting up COS and Storage Class that support the
applications. It may be necessary for multiple mount points to be used to get the COS and
Storage Class combinations correct for different application usage patterns. For this reason, it is

05/04/2015 12:39 PM

HPSSFS-FUSE Administrator’s Guide file:///C:/Users/IBM_ADMIN/Documents/VFS/admin_guide.html

11 of 39

sometimes best to use multiple HPSSFS-FUSE mounts to provide different optimization options
to the same HPSS namespace.

See "Storage Configuration" in the HPSS Management Guide for more information.

4.4. Troubleshooting

There are several sources of information available for the administrator to look at when
troubleshooting an HPSSFS-FUSE problem. The following section documents where this
information is stored and what can be done to monitor and control the level of output.

D Client API

Keep in mind the following about HPSSFS-FUSE: it is built upon the HPSS
Client API. If there are basic communication problems or performance
issues with the HPSS Client API, there is little point to troubleshooting
HPSSFS-FUSE itself. It is recommended that the administrator perform a
set of basic operations using scrub or the API example programs to verify
the function and performance of the system. There may very well be
problems with HPSSFS-FUSE in the end, but troubleshooting the operating
system and HPSSFS-FUSE prerequisites commonly saves a lot of time and
effort.

Because HPSSFS-FUSE is built upon the HPSS Client API, it is useful to set the API
debug/logging environment variables (/var /hpss/etc/env.conf):

e HPSS_API_DEBUG=<level>

® HPSS_API_DEBUG_PATH=<stderr|/path/file>

D HPSS_API_DEBUG

The HPSS_API_DEBUG value can be increased up to 7 to produce output
that is more detailed. HPSSFS-FUSE will need to be restarted for the
environment variables to take effect, meaning the mount points will have to
be remounted.

See "Tuning and Troubleshooting" in the HPSS Programmer’s Reference for more information.

4.4.1. Syslog

The most important resource for monitoring HPSSFS-FUSE mount points is the Linux syslog.
Linux system error and diagnostic messages are logged to /var/log/messages. This file is
only directly readable by root; any non-privileged user can view it using the dmesg (1)
command. When this file grows larger than some configured size (see 1ogrotate (8)), itis
rotated to a file name that is post-fixed with an integer value that indicates its relative age.

HPSSFS-FUSE has a number of logging message classes. These include ERROR and 5 TRACE
levels. The trace class messages must be enabled in order to appear in the syslog. The trace level
is controlled by a mount option and at runtime via the system.hpssfs.trace xattr. The ERROR
class is intended to indicate a potentially disastrous error. The TRACE class is intended to give

05/04/2015 12:39 PM

HPSSFS-FUSE Administrator’s Guide file:///C:/Users/IBM_ADMIN/Documents/VFS/admin_guide.html

12 of 39

increased level of detail for diagnosing issues, and should be set to 0 except when directed
otherwise by HPSS support.

4.4.2. Foreground Logging

If the -f mount option is used, HPSSFS-FUSE will run in the foreground. All HPSSFS-FUSE
ERROR and TRACE messages will be printed to stderr instead of the syslog in this case. This is
mainly useful for when a developer needs to assist in diagnostics.

4.4.3. Specialized Logging

The support team may provide a special HPSSFS-FUSE build at the developer’s discretion that
has extremely detailed log messages for specific subsystems in HPSSFS-FUSE in order to
facilitate diagnostics. Please do not use these builds in a production environment once
diagnostics are complete.

4.4.4. HPSS Logs and Alarm & Events Display

One reason for insisting that all HPSS servers and client machines be time-synced is to help the
administrator determine what HPSS errors, as reported in the main HPSS error logging facility,
correspond to problems logged on the client machines. By matching the date and timestamps,
HPSSFS-FUSE errors such as a write -5, the ambiguous "something went wrong" I/O error, can
further be analyzed on the HPSS server side. Such analysis can help determine if the error is
network-related, maybe a sporadic outage between the HPSSFS-FUSE client and HPSS, or

maybe a tape has a permanent error and the user’s HPSSFS-FUSE request simply cannot be
fulfilled.

If there doesn’t seem to be any corresponding information in the HPSS logs, it may be
advantageous to repeat the user request on another HPSSFS-FUSE client, or even use another
HPSS interface such as PFTP to help isolate what part of the overall system is not working
correctly or performing poorly.

4.4.5. Core Dumps

Core dumps should be enabled in case HPSSFS-FUSE happens to crash. If this occurs, please
send the core dump to your support representative.

If using abrtd (8), it may be useful to adjust /etc/abrt/abrt.conf in order for it to
generate a full crash report.

e MaxCrashReportsSize — may need to increase or set to unlimited.
® OpenGPGCheck = no —if you have installed an unsigned HPSSFS-FUSE package.
e ProcessUnpackaged = yes — if you have installed HPSSFS-FUSE from source.

4.4.6. Force Unmount

Due to exceptional circumstances, it may be necessary to perform a force unmount to unmount
an HPSSFS-FUSE mount point. This can be achieved with the -f flag in the umount (8)
command:

$ umount -f /mnt/hpss

In rare situations, this may be insufficient. It may be necessary to issue an abort through FUSE’s
debugfs interface.

05/04/2015 12:39 PM

HPSSFS-FUSE Administrator’s Guide file:///C:/Users/IBM_ADMIN/Documents/VFS/admin_guide.html

$ grep "/mnt/hpss" /proc/self/mountinfo | cut -d' ' -f3 | cut -d':' -f2
47
$ echo 1 > /sys/fs/fuse/connections/47/abort

$ umount /mnt/hpss

5. Unprivileged Mounts

FUSE allows unprivileged mounts. This means mounts performed by unprivileged users. It
achieves this by having a helper set-uid program fusermount (1) perform mounts for FUSE
filesystems. On some systems, the default permissions only allow users in the group fuse to
execute this program. This is recommended to isolate unprivileged mounts to trusted users
only.

Although this allows unprivileged users to mount HPSSFS-FUSE, they must still provide valid
HPSS credentials for the mount to succeed. Only a principal which has the Core Server Control
ACL (such as hpssfs) can perform operations on behalf of other users, so unprivileged mounts
should be limited to principals which do not have the Core Server Control ACL. It is
recommended not to use the allow_other mount option on unprivileged mounts because
without the Core Server Control ACL, all operations will be performed on behalf of the principal
used for the mount. Furthermore, it is recommended that unprivileged mounts perform the
mount as the user which is supplied as the principal, otherwise FUSE may prevent access to
your files due to the uid mismatch.

‘ 0 SAN3P
N) SANS3P transfers may not work with unprivileged mounts since they require
read-write access to the SAN devices.

Checksum

(@)

The checksum feature may not work with unprivileged mounts since it
requires read-write access to HPSS’s root directory and to the files being
opened.

6. Uses

The HPSSFS-FUSE interface provides users with the ability to use commonly available file
transport mechanisms. This simplifies the use of HPSS by allowing users to access HPSS via
interfaces they are familiar utilizing. This section covers some of these applications, their use,
hints at how they might be configured for use with HPSSFS-FUSE, describes any known
limitations or changes required, and recommendations or lessons learned from field experience.

6.1. General

6.1.1. Overview

If you have not read Concepts, you need to review it and have a good understanding about the

13 of 39 05/04/2015 12:39 PM

HPSSFS-FUSE Administrator’s Guide file:///C:/Users/IBM_ADMIN/Documents/VFS/admin_guide.html

14 of 39

differences between a filesystem (i.e. LFS, GPFS, etc) and an HSM (HPSS). It must be stressed
that HPSSFS-FUSE looks like a filesystem, but it is an interface to HPSS, which is an HSM.
Those differences can have a significant impact to applications that expect 100% compatibility
with a true filesystem. Users who run large programs successfully on a shared filesystem like
GPFS, may run into issues with their application when files are not immediately available (e.g.
must be staged from tape) or where too many simultaneous open files, small block, or random
I/0 operations are occurring. HPSSFS-FUSE is a convenience for accessing HPSS, but it will not
hide the realities of the storage system behind it.

6.1.2. Applications

The HPSS team supports the HPSSFS-FUSE interface and will assist administrators (based on
the contract or SOW that exists with a site) with its use. However, HPSS does not provide
support for applications that reside on top of HPSSFS-FUSE. Several applications are
mentioned in this section including the popular SAMBA interface that provides file sharing
across a number of different operating systems. Many sites have been able to successfully use
SAMBA and other tools with HPSSFS-FUSE. Even so, the HPSS team itself does not provide
support for installing, configuring, or maintaining 3rd party applications. Before sites use these
applications, they must be prepared to support themselves or obtain support from other
sources. If there are problems using one of the applications, and it can be shown that the
underlying problem is because HPSSFS-FUSE is mishandling an operation, HPSS support will
submit a bug report to development and look for ways to address the issue. It is imperative that
the administrator provide as much detail as possible when reporting a problem and have
performed due-diligence in ensuring the problem is not with the application or how the end
user is using the application.

6.1.3. End-User Access to HPSSFS-FUSE

If there are to be end users directly accessing HPSSFS-FUSE who are not necessarily aware of
HPSS and its HSM characteristics, it is suggested that certain UNIX commands that recursively
perform name-space operations on files be aliased with scripts or programs to test what
filesystems they are accessing. In the case of grep (1) or fgrep (1), a warning or limitation
should be in place to ensure that users don’t accidentally search for a string in files and induce a
large number of file stages from tape as the command recursively navigates the directory tree. It
is likely impossible to prevent all such possible accidents by users, and certainly in no way will
prevent intentional misuse of the system, but such precautions will quickly pay for the extra
up-front effort by redirecting common filesystem commands that aren’t necessarily "HSM
friendly".

cp (1) andmv (1) Commands

The cp (1) and mv (1) commands from coreutils, by default, attempt to optimize 1/0 by
skipping parts of a file that are heuristically determined to be sparse, i.e. contain large
sequences of zeros. If a sparse section of a file is encountered while reading, the corresponding
part of the destination file is skipped (using 1seek (2)), and writing is resumed where the
chunk of zeros ends. This has the potential to significantly reduce the amount of writing
performed.

In the case that the destination file is in HPSSFS-FUSE, sparse files tend to produce issues.
When writing to a file, skipping over a section (using 1seek (2)) and then writing causes a new
Bitfile segment to be created (it would otherwise extend the current Bitfile segment). If this is
done frequently, you may eventually run into an HPSS limit on the number of Bitfile segments.
If this happens, then no additional Bitfile segments may be created. Therefore, it is

05/04/2015 12:39 PM

HPSSFS-FUSE Administrator’s Guide file:///C:/Users/IBM_ADMIN/Documents/VFS/admin_guide.html

15 of 39

recommended that when using the cp (1) command, you use the ——sparse=never option,
which switches off the optimization described earlier. This causes cp (1) to actually write the
sparse sections to the destination file, effectively writing the entire file in a single Bitfile
segment. However, the mv (1) command has no equivalent option, so it is recommended to cp
—-sparse=never into HPSSFS-FUSE and unlink the source file instead of trying to use
mv(l).

6.2. SAMBA

SAMBA is a suite of UNIX applications that speak the SMB/CIFS protocol. Microsoft
Windows®) operating systems and the OS/2® operating system use SMB to perform client-
server networking for file and printer sharing and associated operations. By supporting this
protocol, SAMBA enables computers running UNIX to get in on the action, communicating with
the same networking protocol as Microsoft Windows and appearing as another Windows system
on the network from the perspective of a Windows client. A SAMBA server offers the following
services:

e Share one or more directory trees

e Share one of more Distributed File System (DFS) trees

e Share printers installed on the server among Windows clients on the network

e Assist clients with network browsing

e Authenticate clients logging onto a Windows domain

e Provide or assist with Windows Internet Name Service (WINS) name-server resolution

The SAMBA suite also includes client tools that allow users on a UNIX system to access folders
and printers that Windows systems and SAMBA servers offer on the network.

6.2.1. Configuration and Code Modification Suggestions

One site added a patch which disables the feature where Windows can set a "sticky" file
modification time. This causes the file modification time to be updated after every received
block (4KB-64KB depending), which is a round trip to the metadata server. If the
HPSSFS-FUSE Gateway machine is not local, but attached to HPSS via a WAN, this type of
change is important to maintain high transaction performance.

This is a change that sites would like to see in the SAMBA baseline, but as it stands today, such a
change which would benefit other non-local filesystems (e.g. NFS) has not been adopted by the
keepers of the SAMBA code. Local modifications to the SAMBA code are required.

Sites may want to make a modification to SAMBA to check for and delete a file before creating it
using an open for write with truncate. This allows a site to perform a Class of Service (COS)
change on an existing file. Otherwise, specifying a different COS (either by an explicit ioctl call
or using an alternate HPSSFS-FUSE mount) is ignored.

6.3. NFS

6.3.1. Overview

Network File System (NFS) is an RPC protocol used to share files and directories across a
network.

05/04/2015 12:39 PM

HPSSFS-FUSE Administrator’s Guide file:///C:/Users/IBM_ADMIN/Documents/VFS/admin_guide.html

16 of 39

6.3.2. Configuration Suggestions

At present, few HPSS sites are currently using NFS over HPSSFS-FUSE in production. Based on
past experimentation, however, we recommend the following;:

e The nfs3 mount option should be included for HPSSFS-FUSE mounts exported for use by
NFSv3 clients. Alternative HPSSFS-FUSE exports with the nfs4 mount option should be
provided for NFSv4 clients.

¢ Since NFS is incompatible with junctions, the nfs3 and nfs4 mount options disable
junctions. It is possible to mount fileset roots directly, avoiding the need for junctions.
Secondary mount points may be overlaid on an existing mount to provide a continous
namespace that resembles the HPSS namespace.

e Alarge number of nfsd (8) processes has not been shown to improve NFS performance
with HPSSFS-FUSE. It is recommended that the administrator starts with no more than 4
or 8 nfsd (8) processes and adjust upwards only after conferring with HPSS support.

6.4. Secure FTP

SFTP is the SSH® File Transfer Protocol (sometime referred to as the Secure File Transfer
Protocol). Some sites use SFTP clients to access the HPSS namespace via the HPSSFS-FUSE
interface of HPSS. This allows for a secure, encrypted access from client machines that are not
supported via the Client API, or just as a more general interface for users that do not want to
run the HPSS Client API.

6.4.1. Configuration and Code Modification Suggestions

Sites may want to consider making a small patch to the SFTP code to delete a file before
creating it using an open for write with truncate. This allows a different Class of Service (COS)
to be used if the same file is rewritten. This was done in the sftp-server (8) and scp (1)
Linux code at one of the HPSS sites.

6.5. Apache

6.5.1. Overview

The Apache HTTP Server Project is an effort to develop and maintain an open-source HTTP
server for modern operating systems including UNIX and Windows operating systems. The goal
of this project is to provide a secure, efficient, and extensible server that provides HTTP services
in sync with the current HTTP standards. Some sites use the HTTP server to run a CGI program
to give their users an interface to upload and download files from their HPSSFS-FUSE system.

6.5.2. Configuration Suggestions

Some sites use a CGI program to provide their users with the ability to upload and download
files though a web interface. There were no code or configuration changes made to
HPSSFS-FUSE in order to get this to work. It was suggested that the following line in
httpd.conf be uncommented:

e #FnableSendfile off

6.5.3. Recommendations

Apache on top of HPSSFS-FUSE works well for deep archive-type access where infrequently

05/04/2015 12:39 PM

HPSSFS-FUSE Administrator’s Guide

17 of 39

used data can be back-stored in HPSS. For frequently accessed data, or frequently updated

file:///C:/Users/IBM_ADMIN/Documents/VFS/admin_guide.html

information as found on most web-services (e.g. news or sales-oriented site), HPSSFS-FUSE is
probably not a good fit unless there is substantial HPSS disk cache and files rarely need to be
staged back from tape.

7. Mount Options

HPSSFS-FUSE has a multitude of options to configure mount points.

7.1. Credentials

These are mount options related to setting up HPSS credentials.

/hpss.unix.keytab

Option Description |Example Default
auth Primary auth=auth_keytab:/var|$HPSS_PRIMARY_AUTHENTICATOR
authenticator. | /hpss/etc

authmech | Authentication

authmech=unix

SHPSS_PRIMARY_AUTHN_MECH

mechanism.

authtype |Authentication|authtype=auth_keytab |Derived from auth value
type.

princ Principal princ=hpssfs $HPSS_PRINCIPAL_FS
name.

7.2. HPSS Options

These are the mount options related to HPSS.

Option Description Example Default

cos COS ID on newly created | cos=1 0 (default COS)
file.

family Family ID on newly family=1 0 (None)
created files.

maxfsz Maximum offset to allow [maxfsz=1024 0 (unlimited)
writing in MB.

[no]maxsegz | Use the maximum COS |maxsegsz nomaxsegsz
storage segment size
when creating a new file.

05/04/2015 12:39 PM

HPSSFS-FUSE Administrator’s Guide

18 of 39

file:///C:/Users/IBM_ADMIN/Documents/VFS/admin_guide.html

Option

Description

Example

Default

[no]san [4]

Enable SAN3P.

san

Derived from
SHPSS_API_ SAN3P

[no]stage

Enable staging files on
open.

nostage

stage

7.3. Checksum Options

These are the mount options related to checksum.

Option

Description

Example

Default

cksum

Algorithm to use for
checksum processing.

Valid options (case-
insensitive):

® none

® adler32
® crc32

e mdb5

® shal

® shaz224
® sha256
® sha384
® shabl2

cksum=md5

none (no checksum
processing)

nch

What to do when a
non-checksummed file is
opened.

e £ — Fail to open

e g — Generate a new
checksum

e i — Do not perform
checksum
processing

nch=g

rvl [5]

Seconds for how long a
file is valid since it was
successfully verified.

rvl1=3600

05/04/2015 12:39 PM

HPSSFS-FUSE Administrator’s Guide file:///C:/Users/IBM_ADMIN/Documents/VFS/admin_guide.html

Option Description Example Default
ckstyle L¢]

Where to store checksum | Ckstyle=filehash hybrid

attributes.

e filehash — Store
in File Hash
metadata

e uda — Store in
UDA metadata

® hybrid — Store in
both File Hash and
UDA metadata

7.4. Other HPSSFS-FUSE Options

Option Description Example Default
attrtimeo Seconds to keep attrtimeo=60 60
cached file
attributes.
entrytimeo Seconds to keep entrytimeo=30 30

cached entry names.

stagetimeo Seconds to wait for |stagetimeo=3600 3600
stage completion.

trace Level of detail for trace=1 0
logging.
ip Set API hostname. ip=ethO SHPSS_API_HOSTNAME

Value provided can
be a hostname, IP
address, or network
interface.

stream Buffer size for stream=8 8
readahead/writeback
in megabytes.

nostream Use unbuffered I/O [nostream Not used
(equivalent to
stream=o0).

maxfsz Maximum offsetto |maxfsz=1024 0 (unlimited)
allow writing in
megabytes.

19 of 39 05/04/2015 12:39 PM

HPSSFS-FUSE Administrator’s Guide

20 of 39

file:///C:/Users/IBM_ADMIN/Documents/VFS/admin_guide.html

Option

Description

Example

Default

autopurgelock

Maximum file size in
bytes to
auto-purge-lock. See
Auto Purge Lock for
more information.

autopurgelock=1048576

0 (disabled)

[no]dio

Whether to allow
files to be opened
with O_DIRECT.

dio

nodio

[no]nfs3

Whether to turn on
optimizations for
NFSv3. See NFS for
more information.

nfs3

nonfs3

[no]nfs4

Whether to turn on
optimizations for
NFSv4. See NFS for
more information.

nfs4

nonfs4

0 ip Option
Avoid using loopback addresses for the ip mount option. HPSSFS-FUSE
will use this address for stage callbacks and for Mover connections. If a
Core Server or Mover cannot connect to the address provided, stage
callbacks and Mover I/0 will fail.

0 nfs3 and nfs4 Options
The nfs3 and nfs4 mount options are mutually exclusive. Please provide

separate exports for use by NFSv3 and NFSv4 clients.

7.5. FUSE Options

These are options that are passed through to the FUSE filesystem. See mount . fuse (8) for

more information.

Option Description

-d 7] Enable FUSE debugging. Implies -f.
£zl Run in foreground.

-s [71 Make FUSE requests single-threaded.

05/04/2015 12:39 PM

HPSSFS-FUSE Administrator’s Guide

21 of 39

file:///C:/Users/IBM_ADMIN/Documents/VFS/admin_guide.html

Option

Description

allow_other [8]

Allow other users to access the mount point. This option is recommended
for privileged mounts which use the hpssfs principal.

allow_root [8]

Allow root user to access the mount point.

auto__unmount

Automatically unmount if FUSE server process dies.

[o]
debug Enable FUSE debugging. Same as -d.
nonempty Allow mount even if mount point is not empty.
fe?ddirplus Enable readdirplus.

10

7.6. Kernel Options

These are options available to any mount point. See mount (8) for more information.

Option Description

ro Mount as read-only.

W Mount as read-write.

[no]atime | Whether to update inode access times.

[no]dev [11]1 |Whether to allow access to special devices. HPSS does not support special

devices, so this option has no effect.

[no]exec [11]

Whether to allow programs to be executed.

[no]suid Whether to honor the set-uid bit on programs.
[a]lsync Whether to perform synchronous I/0.
dirsync Complete all directory updates synchronously.
context Default SELinux labels [2],

defcontext

fscontext

rootcontext

8. Extensions

HPSSFS-FUSE supports a number of extensions to the POSIX library interface to enable users

05/04/2015 12:39 PM

HPSSFS-FUSE Administrator’s Guide

22 of 39

to control specific HPSS attributes, such as setting the Class of Service (COS) value. It also

file:///C:/Users/IBM_ADMIN/Documents/VFS/admin_guide.html

supports additional operations that occur on the opening and closing of files.

8.1. ioctl (2) Interface

Command Description Example
HPSSFS_GET_COS Get COS getcos.c
HPSSFS_SET_COS_HINT Set COS hints by COS ID setcoshint.c

HPSSEFS_SET_FSIZE_HINT

Set COS hints by file size

setfsizehint.c

HPSSFS_SET_MAXSEGSZ_HINT

Set
HINTS_FORCE_MAX_SSEG
COS hints flag

setmaxsegszhint.c

HPSSFS_PURGE_CACHE

Purge file data from the
kernel cache

purge cache.c

HPSSFS_PURGE_LOCK

Purge lock or unlock a file

purge lock.c

05/04/2015 12:39 PM

HPSSFS-FUSE Administrator’s Guide

23 of 39

8.1.1. Examples

getcos.c

/* getcos.c */
#include <fcntl.h>

#include <inttypes.h>

#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <sys/ioctl.h>

#include <unistd.h>

#include <linux/hpssfs.h>

int main(int argc, char *argvl[])

{

int fd, rc;
const char *filename;

uint32_t cos;

if((filename = *++argv) == NULL)

{
fprintf (stderr, "Usage: %s <filename>",
return EXIT_FAILURE;

fd = open(filename, O_RDONLY |O_NONBLOCK) ;
if(fd < 0)
{

perror ("open");

return EXIT_FAILURE;

rc = ioctl(fd, HPSSFS_GET_COS, &cos);
if(rc !'= 0)
{

perror ("ioctl");

close (fd) ;

return EXIT_FAILURE;

close (fd) ;

printf ("COS is %" PRIu32 "\n", cos);
return EXIT_SUCCESS;

file:///C:/Users/IBM_ADMIN/Documents/VFS/admin_guide.html

argv[0]);

05/04/2015 12:39 PM

HPSSFS-FUSE Administrator’s Guide file:///C:/Users/IBM_ADMIN/Documents/VFS/admin_guide.html

setcoshint.c

24 of 39 05/04/2015 12:39 PM

HPSSFS-FUSE Administrator’s Guide

/* setcoshint.c */
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/ioctl.h>
#include <unistd.h>
#include <linux/hpssfs.h>

int main(int argc, char *argvl[])
{

int rc, fd;

const char *filename, *cosstr;

unsigned long val;

uint32_t cos;
if((filename = *++argv) == NULL
|| (cosstr = *++argv) == NULL)

{
fprintf (stderr,
return EXIT_FAILURE;

errno = 0;
val = strtoul(cosstr, NULL, O0);
if(val > UINT32_MAX || errno != 0)

{
fprintf (stderr,
return EXIT_FAILURE;

cos = val;

fd = open(filename, O_RDWR|O_CREAT|O_NONBLOCK,

if(fd < 0)

{
perror ("open");
return EXIT_FAILURE;

rc = ioctl (fd, HPSSFS_SET_COS_HINT, &cos);
if(rc !'= 0)
{

perror ("ioctl");

close (fd) ;

return EXIT_FAILURE;

close (fd) ;

return EXIT_SUCCESS;

25 of 39

file:///C:/Users/IBM_ADMIN/Documents/VFS/admin_guide.html

"Usage: %s <filename> <cos-id>", argv([0]);

"Invalid COS ID '%s'\n", cosstr);

0644);

05/04/2015 12:39 PM

HPSSFS-FUSE Administrator’s Guide file:///C:/Users/IBM_ADMIN/Documents/VFS/admin_guide.html

setfsizehint.c

26 of 39 05/04/2015 12:39 PM

HPSSFS-FUSE Administrator’s Guide

27 of 39

/* setfsizehint.c */

#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/ioctl.h>

#include <unistd.h>

#include <linux/hpssfs.h>

int main(int argc, char *argvl[])

{

int rc, fd;

const char *filename, *size;
unsigned long long val;

uint64_t filesize;

if((filename = *++argv) == NULL

|| (size = *++argv) == NULL)

{
fprintf (stderr, "Usage: %s <filename> <size>", argv([0]);
return EXIT_FAILURE;

errno = 0;
val = strtoull(size, NULL, O0);
if(val > UINT64_MAX || errno != 0)
{
fprintf (stderr, "Invalid size '$s'\n", size);

return EXIT_FAILURE;
}

filesize = val;

fd = open(filename, O_RDWR|O_CREAT|O_NONBLOCK, 0644);
if(fd < 0)
{

perror ("open");

return EXIT_FAILURE;

rc = ioctl(fd, HPSSFS_SET_FSIZE_HINT, &filesize);
if(rc !'= 0)
{

perror ("ioctl");

close (fd) ;

return EXIT_FAILURE;

close (fd) ;

return EXIT_SUCCESS;

file:///C:/Users/IBM_ADMIN/Documents/VFS/admin_guide.html

05/04/2015 12:39 PM

HPSSFS-FUSE Administrator’s Guide

28 of 39

setmaxsegszhint.c

/* setmaxsegszhint.c */

#include
#include
#include
#include
#include
#include

<fcntl.h>
<stdio.h>
<stdlib.h>
<sys/ioctl.h>
<unistd.h>

<linux/hpssfs.h>

int main(int argc, char *argv[])

{

int

rc, fd;

const char *filename;

if((filename = *++argv) == NULL)

{

fprintf (stderr, "Usage: %s <filename>", argv[0]);
return EXIT_FAILURE;

fd = open(filename, O_RDWR|O_CREAT|O_NONBLOCK, 0644);

if(fd < 0)

{

perror ("open") ;
return EXIT_FAILURE;

rc = ioctl(fd, HPSSFS_SET_MAXSEGSZ_HINT) ;

if(rc

{

1= 0)

perror ("ioctl");
close (fd) ;
return EXIT_FAILURE;

close (fd) ;

return EXIT_SUCCESS;

file:///C:/Users/IBM_ADMIN/Documents/VFS/admin_guide.html

05/04/2015 12:39 PM

HPSSFS-FUSE Administrator’s Guide

purge_cache.c

/* purge_cache.c */
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <unistd.h>
#include <linux/hpssfs.h>

int main(int argc, char *argvl[])
{
int fd, rc, failed = 0;
const char *filename;

if((filename = *++argv) == NULL)

{
fprintf (stderr, "Usage: %s filel
return EXIT_FAILURE;

do

fd = open(filename, O_RDONLY |O_NONBLOCK) ;

if(fd < 0)
{

fprintf (stderr, "open(%s): %$s\n",

failed = 1;

rc = ioctl(fd, HPSSFS_PURGE_CACHE) ;

if(rc !'= 0)
{

file:///C:/Users/IBM_ADMIN/Documents/VFS/admin_guide.html

[file2...]\n", argv[0]);

strerror (errno));

fprintf (stderr, "ioctl(%s, HPSSFS_PURGE_CACHE): %s\n",

filename, strerror (errno));

failed = 1;
}

else
fprintf (stdout, "purged %$s\n",
close (fd) ;
} while((filename = *++argv) != NULL)

if(failed)
return EXIT_FAILURE;

return EXIT_SUCCESS;

29 of 39

filename) ;

05/04/2015 12:39 PM

HPSSFS-FUSE Administrator’s Guide file:///C:/Users/IBM_ADMIN/Documents/VFS/admin_guide.html

purge_lock.c

30 of 39 05/04/2015 12:39 PM

HPSSFS-FUSE Administrator’s Guide

/* purge_lock.c */
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include <sys/ioctl.h>
#include <unistd.h>

#include <linux/hpssfs.h>

int main(int argc, char *argvl[])
{
int rc, fd;
const char *filename, *cmd;
uint32_t lock;

if((filename = *++argv) == NULL

|| (cmd = *++argv) == NULL)

{
fprintf (stderr, "Usage: %s <filename>
return EXIT_FAILURE;

if (strcasecmp (cmd, "lock") == 0)
lock = 1;

else if (strcasecmp(cmd, "unlock") == 0)
lock = 0;

else

{
fprintf (stderr, "Usage: %s <filename>
return EXIT_FAILURE;

fd = open(filename, O_RDONLY |O_NONBLOCK) ;

if(fd < 0)

{
perror ("open");
return EXIT_FAILURE;

rc = ioctl (fd, HPSSFS_PURGE_LOCK, &lock);

if(rc !'= 0)

{
perror ("ioctl");
close (fd) ;
return EXIT_FAILURE;

close (fd) ;

return EXIT_SUCCESS;

31 of 39

file:///C:/Users/IBM_ADMIN/Documents/VFS/admin_guide.html

<lock|unlock>", argv[0]);

lock|unlock", argv[0]);

05/04/2015 12:39 PM

HPSSFS-FUSE Administrator’s Guide file:///C:/Users/IBM_ADMIN/Documents/VFS/admin_guide.html

32 of 39

HPSSFS-FUSE supports the fallocate (2) system call [13],

8.2. fallocate (2) The raliocate (2) system call allows the user to perform two
operations.

8.2.1. Preallocate

This operation allows the user to preallocate disk space on a disk Storage Class at the top of the
file’s COS Hierarchy. If this operation succeeds, a write to the file up to the preallocated size
cannot fail due to insufficient space.

8.2.2. Punch Hole

This operation allows the user to punch a hole in a file. Essentially in HPSS, this means
removing the specified portion of Bitfile segments, which consequently makes that portion of
the file filled with zeros. As a side effect, some storage segments may also be freed.

8.3. Linux Extended Attributes

HPSSFS-FUSE supports Linux Extended Attributes (xattrs). These are manipulated using the
getxattr (2), setxattr(2), listxattr (2),and removexattr (2) system calls; the
attr_get (3),attr_set(3),attr_multi(3),and attr_remove (3) library calls; and the
getfattr(l), setfattr(l),and attr (1) commands. See attr (5) for more information.

8.3.1. Features and Limitations

Improvements Over HPSSFS-VFS

e HPSSFS-FUSE supports xattrs with binary values. Previously, xattr values were limited to
text-only.

e HPSSFS-FUSE supports xattrs with values up to 64KB (enforced by the kernel).
Previously, xattr values were limited to under 1KB.

Limitations

¢ In order to support maximum-sized xattr values, the Core Server must have the following
options in /var/hpss/etc/env.conf:

O HPSS_API_XMLSIZE_LIMIT=131072 (or greater)
© HPSS_API_XMLREQUEST_LIMIT=131072 (or greater)

e POSIX ACL’s and SELinux labels are not supported at this time due to limitations with the
FUSE kernel module.

8.3.2. system Namespace

HPSSFS-FUSE supports arbitrary xattrs in the system namespace. However, the
system.posix_acl_access and system.posix_acl_default xattrs are currently disabled because
FUSE does not correctly support them. Additionally, the system.hpssfs namespace is reserved
for HPSSFS-FUSE runtime settings, and the system.hpss namespace is reserved for HPSS
attributes.

Name Description Access

05/04/2015 12:39 PM

HPSSFS-FUSE Administrator’s Guide

33 of 39

file:///C:/Users/IBM_ADMIN/Documents/VFS/admin_guide.html

Name Description Access
system.hpssfs.trace View or set the current trace | Read/Write
level for the mount point.
This xattr only exists on the
mounted directory.
system.hpss.account HPSS Account ID Read/Write; files
only
system.hpss.bitfile HPSS Bitfile ID Read; files only
system.hpss.comment HPSS Comment Read/Write
system.hpss.cos HPSS COS ID Read/Write; files
only
system.hpss.family HPSS File Family ID Read/Write; files
only
system.hpss.fileset HPSS Fileset Read
system.hpss.level HPSS Level Data Read
system.hpss.opens HPSS Opens Read; files only
system.hpss.optimum HPSS Optimum Access Size | Read; files only
system.hpss.reads HPSS Reads Read; files only
system.hpss.realm HPSS Realm ID Read
system.hpss.subsys HPSS Subsys ID Read
system.hpss.writes HPSS Writes Read; files only
system.hpss.hash [6] HPSS File Hash Metadata | Read/Write; files
only
system.hpss.trash.parent [4] HPSS Trash Parent ID Read
system.hpss.trash.uid D4l HPSS Trash User ID Read
system.hpss.trash.timedeleted | HPSS Trash Time Deleted Read
[14]
system.hpss.trash.timecreated | HPSS Trash Time Created | Read
[14]
system.hpss.trash.timelastread| HPSS Trash Time Last Read | Read

[14]

05/04/2015 12:39 PM

HPSSFS-FUSE Administrator’s Guide file:///C:/Users/IBM_ADMIN/Documents/VFS/admin_guide.html

34 of 39

Name Description Access
system.hpss.trash.timemodified| HPSS Trash Time Last Read
[14] Modified
system.hpss.trash.path [4] HPSS Trash Path Read
system.hpss.trash.name [14] HPSS Trash Name Read

8.3.3. trusted Namespace

HPSSFS-FUSE supports arbitrary xattrs in the trusted namespace for super users. These xattrs
are stored in HPSS UDA metadata under the XPath /hpss/fs, e.g. the xattr trusted.name will
be located at the XPath /hpss/fs/trusted.name.

8.3.4. security Namespace

HPSSFS-FUSE supports arbitrary xattrs in the security namespace for all users. However, the
security.selinux and security.capability xattrs are currently disabled because FUSE does not
properly support them.

8.3.5. user Namespace

HPSSFS-FUSE supports arbitrary xattrs in the user namespace for all users. Most of these
xattrs are stored in the HPSS UDA metadata under the XPath /hpss/ fs, e.g. the xattr
user.name will be located at the XPath /hpss/fs/user.name. The checksum attributes are
stored in a separate XPath for interoperability with other interfaces.

8.4. Checksum

HPSSFS-FUSE Checksum feature is a file-level checksumming mechanism which generates file
checksums when files are created and written. When files are later opened, their contents are
verified against the generated checksum. If the checksum does not match, the file fails to open.

8.4.1. Operation

This section will briefly describe the operations of the HPSSFS-FUSE Checksum feature,
assuming the checksum option is enabled.

File Creation and Inline Checksumming

When a file is created, a new hash context is created which uses the algorithm specified by the
cksum mount option. As data is appended to the file, the data is also appended to the hash
context, and the context’s offset is moved forward. If the file offset of an incoming write is past
the current context’s offset, then a zero-filled buffer is appended to the context in order to fill
the gap. These two operations are inline checksumming. Once the file is closed, the context is
finalized and the resulting digest is stored.

If the file offset of an incoming write is before the current context’s offset, then inline
checksumming is disabled. No more checksum processing will be performed until the file is
closed.

File Open Readback

05/04/2015 12:39 PM

HPSSFS-FUSE Administrator’s Guide file:///C:/Users/IBM_ADMIN/Documents/VFS/admin_guide.html

35 of 39

When a file is opened, the entire file is read. The file’s contents are checksummed and verified
against the checksum metadata. If the checksums do not match, the file fails to open. The file
can resume inline checksumming with the context’s offset pointed at the end of the file.

File Close Readback
A file may be read back upon close if any of the following conditions are met:

¢ Inline checksumming was canceled due to writing prior to the context’s offset (otherwise
known as "random I/0").

e Multiple users have opened the file.

In these cases, the file needs to be read back in order to generate its checksum. Once the file has
been processed, its checksum metadata is updated.

. Checksum Readback

‘0) Readbacks for the purpose of generating new checksum information can
happen in one of two ways:

1. Generate on open if no checksum information exists and nch=g

2. Generate on close if random I/O or concurrent users is detected
In both cases, we must rely on the data which resides in HPSS to generate
the checksum. You should minimize these cases because the checksum will
be generated based on the data read from HPSS. It is possible that the data
could have already been corrupted by the time we read it, resulting in a
checksum that matches the corrupted data. From then on, integrity checks

will continue to pass as long as the generated checksum matches the
corrupted data.

Supported Algorithms
The HPSSFS-FUSE Checksum feature supports the following hashing algorithms:
o Adler3z
e CRC32
e MD5
e SHA1
e SHA224
o SHA256
e SHA384
e SHA512

Concurrency

The HPSSFS-FUSE Checksum feature is designed to consider several forms of concurrency.
They are all implemented by using UDA’s to create a persistent lock and persistent leases. When
a file is opened for checksum processing, the mount point acquires a UDA lock and lease. All
threads/processes which open the file on a single mount point have their own context, and so

05/04/2015 12:39 PM

HPSSFS-FUSE Administrator’s Guide file:///C:/Users/IBM_ADMIN/Documents/VFS/admin_guide.html

36 of 39

can be viewed as separate instances from the standpoint of concurrency. Each time a file is
opened, the open count for the file will be incremented. Upon close, the open count will be
decremented. If you reach an open count of zero and detect that other users had opened the file,
then you will perform a readback-on-close to regenerate the checksum metadata. Similarly,
readback-on-open will only be performed if you are the first to open a file.

8.4.2. Configuration

Mount Options
There are several mount options that control the HPSSFS-FUSE Checksum feature:

e cksum — This options chooses which algorithm to use for checksum processing when a
new checksummed file is created. The algorithm is always determined by checksum
metadata for existing checksummed files. This option is required to enable checksum. If it
is not specified, checksum processing will never take place on this mount point. The
supported values (case-insensitive) are:

o cksum=none — Disable checksum; default
o cksum=adler32 — Use Adler32 algorithm
o cksum=crc32 — Use CRC32 algorithm

0 cksum=md5 — Use MDs5 algorithm

0 cksum=shal — Use SHA1 algorithm

0 cksum=sha224 — Use SHA224 algorithm
o cksum=sha256 — Use SHA256 algorithm
o cksum=sha384 — Use SHA384 algorithm
0 cksum=sha512 — Use SHA512 algorithm

e nch — This option chooses what to do when a non-checksummed file is opened.
Otherwise, normal checksumming operations occur. The supported values are:

o nch=1i — Do not perform any checksum processing; allow non-checksummed files to
open successfully. Concurrency bookkeeping will still occur, and if concurrency is
detected, this will still perform readback-on-close checksumming.

o nch=g — Generate a new checksum. This will perform readback-on-open
checksumming and apply the generated checksum to the metadata.

o nch=f — If the file is non-checksummed, the open will fail; default

e rv1 — Revalidation timeout: number of seconds that a checksum is considered valid since
it was last successfully verified. The default is 0, so checksums are verified on every open.
A non-zero value allows subsequent opens to succeed without performing a readback if
they occur within this timeout since the last verification by this mount point. This option
must have a non-zero value for checksumming to work when using the nfs3 or nfs4 mount
options for NFS optimizations.

e ckstyle [l — Where to store checksum metadata. The supported values are:
o0 ckstyle=filehash — Store in File Hash metadata
o ckstyle=uda — Store in UDA metadata
o ckstyle=hybrid — Store in both File Hash and UDA metadata; default

05/04/2015 12:39 PM

HPSSFS-FUSE Administrator’s Guide file:///C:/Users/IBM_ADMIN/Documents/VFS/admin_guide.html

Relation to Other Mount Options

Readbacks occur separately from normal file activity. Due to this, some mount options apply
differently to readbacks.

® [no]stage — Has no effect; readbacks always stage the file

8.4.3. External Application Interoperability

HPSSFS-FUSE Checksum is designed to be compatible with other applications which use HPSS
Checksums, including HSI, hpsssum, and HPSSFS-VFS. These programs use a unified UDA
path for storing checksum metadata. There is no mechanism to ensure coherency between
HPSSFS-FUSE and HSI/hpsssum.

8.4.4. Checksum UDA Paths
The following is a list of UDA paths used for checksum and their purposes:

XPath xattr Description

/hpss/user/cksum user.hash.checksum The hash value of the file using the
/checksum specified algorithm
/hpss/user/cksum user.hash.algorithm The algorithm used to calculate the
/algorithm hash

/hpss/user/cksum/state |user.hash.state The state of the current checksum

value.
e Valid — The current checksum
is valid
e Tnvalid — The digest did not
match the readback digest

e Error — An error occurred
when trying to readback the file

e NoEntry — Not all of the
required checksum UDA’s were
present during the last readback

/hpss/user/cksum user-hash.lastupdate | » yyN1x timestamp of the last time
/lastupdate UDA’s were updated
/hpss/user/cksum user.hash.errors Number of readback errors since the
/errors last successful readback
/hpss/user/cksum user.hash. filesize Size of the file

/filesize

/hpss/user/cksum/app user.hash.app Name of the application which last

updated the checksum UDA’s

37 of 39 05/04/2015 12:39 PM

HPSSFS-FUSE Administrator’s Guide file:///C:/Users/IBM_ADMIN/Documents/VFS/admin_guide.html

HPSSFS-FUSE-Specific UDA Paths

The following is a list of UDA paths which are only used by HPSSFS-FUSE and HPSSFS-VFS.
They should not be modified by end users, otherwise unexpected checksum behavior may occur.

XPath Description

/hpss/fs Number of concurrent opens on this file
/user .open.total

/hpss/fs/user.mounts/* | List of mount points that have this file open

/hpss/fs Lock to serialize UDA access
/user .open.lock

/hpss/fs/user.leases/* | List of mount point leases. This attribute only applies to
HPSS’s root directory. It is the "heartbeat" of checksum mount
points. If a lease expires, then any lock held by that mount
point is invalid.

8.5. Auto Purge Lock

Auto Purge Lock is a feature that prevents files under a given size from being purged after
migration. It is controlled via the autopurgelock mount option.

When enabled, if a file is written to, it becomes a candidate for Auto Purge Lock. Once the file is
closed, if its size is less than or equal to the size specified by the autopurgelock mount option,
then the file is automatically purge locked. The file can still be migrated, but it will not be
purged while it remains purge locked.

9. References

e HPSS Management Guide
e HPSS Installation Guide

e HPSS Programmer’s Reference

10. Trademarks

Apache®) is a registered trademark of Apache Software Foundation.
Arch™ is a trademark of Aaron Griffin and/or Judd Vinet.

CentOS™ is a trademark of Red Hat, Inc.

Debian® is a registered trademark of Software in the Public Interest, Inc.
Gentoo® is a registered trademark of Gentoo Foundation, Inc.

High Performance Storage System™ and HPSS™ are trademarks of International Business
Machines Corporation.

38 of 39 05/04/2015 12:39 PM

HPSSFS-FUSE Administrator’s Guide file:///C:/Users/IBM_ADMIN/Documents/VFS/admin_guide.html

39 of 39

Intel® is a registered trademark of Intel Corporation.

Linux Mint™ is trademarked through the Linux Mark Institute.

Linux®) is a registered trademark of Linus Torvalds.

Mageia™ is a trademark of Mageia.org.

Microsoft Windows® is a registered trademark of Microsoft Corporation.

Oracle® is a registered trademark of Oracle International Corporation.

POSIX® is a registered trademark of Institute of Electrical and Electronics Engineers, Inc.

0S/2® and PowerPC® are registered trademark of International Business Machines
Corporation.

RHEL® and Fedora® are registered trademarks of Red Hat, Inc.

UNIX® is a registered trademark of The Open Group.

Ubuntu® is a registered trademark of Canonical Ltd.

openSUSE® and SUSE® are registered trademarks of Novell, Inc.

SAMBA™ is a trademark of Software Freedom Conservancy, Inc.

slackware® is a registered trademark of Patrick Volkerding and Slackware Linux, Inc.

SSH® is a registered trademark of SSH Communications Security Corporation.

1. HPSSFS-FUSE is only officially supported on RHEL® (Intel® and PowerPC® versions.). Minimal testing has been
performed on all major Linux distributions (Arch Linux™, CentOS™, Debian®, Fedora®, Gentoo®), Linux Mint™,
Mageia™, openSUSE®), Oracle® Linux, slackware®, SUSE®), and Ubuntu®), but only RHEL goes through a full
testing cycle.

2. HPSSFS-FUSE releases are only tested against the latest release of HPSS.
3. Be extra careful with this command, especially if running as root!
4. SAN3P transfers are only available for privileged mounts.
5. Required to be non-zero for NFS.
6. Requires HPSS File Hash (E2EDI) feature.
7. These options are only useful for diagnostic purposes.
8. Availability of this option is controlled by /etc/fuse.conf.
9. Requires FUSE 2.9 or later.
10. Requires FUSE 3.0 or later.
Can only be overridden by a privileged user.
. FUSE does not appear to allow these options at this time.
. Requires FUSE 2.9.1 or later.

R &R E

. Requires HPSS Trashcan feature.

Version 600
Last updated 2015-01-07 10:05:41 CST

05/04/2015 12:39 PM

