
ROOT and PROOF Tutorial

Arsen Hayrapetyan Martin Vala
Yerevan Physics Institute, Yerevan, Armenia;

European Organization for Nuclear Research (CERN)

Arsen.Hayrapetyan@cern.ch

Institute of Experimental Physics,
Slovak Academy of Sciences;

European Organization for Nuclear Research
(CERN)

Martin.Vala@cern.ch

Outline

GridKa School 2012, ROOT/PROOF tutorial

 Introduction to ROOT
 ROOT hands-on exercises
 Introduction to PROOF
 PROOF hands-on exercises

What is ROOT?

GridKa School 2012, ROOT/PROOF tutorial

  Object-oriented data handling and analysis framework
  Framework: ROOT provides building blocks (root classes) to

use in your program.
 Data handling: ROOT has classes designed specifically for

storing large amount of data (GB, TB, PB) to enable effective
data analysis.

 Analysis: ROOT has complete collection of statistical,
graphical, networking and other classes that user can use in
their analysis.

 Object-oriented: ROOT is based on OO programming
paradigm and is written in C++.

Who is developing ROOT?

GridKa School 2012, ROOT/PROOF tutorial

  ROOT is an open source project started in 1995 by René
Brun and Fons Rademakers.

  The project is developed as a collaboration between:
  Full time developers:

  7 developers at CERN (PH/SFT)
  2 developers at Fermilab (US)

  Large number of part-time contributors (160 in CREDITS file
included in ROOT software package)

 A vast army of users giving feedback, comments, bug fixes and
many small contributions
  ~5,500 users registered to RootTalk forum
  ~10,000 posts per year

Who is using ROOT?

GridKa School 2012, ROOT/PROOF tutorial

  All High Energy Physics experiments in the world
  Astronomy: AstroROOT (http://www.isdc.unige.ch/astroroot/index)

  Biology: xps package for Bioconductor project

 (http://prs.ism.ac.jp/bioc/2.7/bioc/html/xps.html)

  Telecom: Regional Internet Registry for Europe, RIPE (Réseaux IP
Européens) NCC Network Coordination Centre

 (http://www.ripe.net/data-tools/stats/ttm/current-hosts/analyzing-test-box-data)

  Medical fraud detection, Finance, Insurance, etc.

ROOT is used in a many scientific fields as well as in industry.

What can I do with ROOT?

GridKa School 2012, ROOT/PROOF tutorial

You can:
 Store large amount of data (GB, TB, PB) in ROOT-provided

containers: files, trees, tuples.
 Visualize the data in one of numerous ways provided by

ROOT: histograms (1, 2 and 3-dimensional), graphs, plots,
etc.

 Use physics analysis tools: physics vectors, fitting, etc.
 Write your own C++ code to process the data stored in

ROOT containers.

ROOT features: Data containers

GridKa School 2012, ROOT/PROOF tutorial

  ROOT provides different types of data containers:
  Files, folders
  Trees, Chains, etc.

ROOT features: Data visualization

GridKa School 2012, ROOT/PROOF tutorial

  ROOT provides a range of data visualization methods: histograms (one-
and multi-dimensional), graphs, plots (scatter, surface, lego, …)

ROOT features: GUI

GridKa School 2012, ROOT/PROOF tutorial

The Graphical User Interface (CLI) allows you to manipulate graphical objects (histograms,
canvases, graphs, axes, plots, …) clicking on buttons and typing values in text boxes.

ROOT features: CLI

GridKa School 2012, ROOT/PROOF tutorial

The Command Line Interface (CLI) allows you to type in the commands (C++, root-
specific, OS shell) and processes them interactively via CINT – C++ interpreter.

Trees (class TTree)

GridKa School 2012, ROOT/PROOF tutorial

  A tree is a container for data storage
  It consists of several branches

  These can be in one or several files
  Branches are stored contiguously (split mode)

  Set of helper functions to visualize the content (e.g.
Draw, Scan)

  Compressed

Tree
Branch

Branch

Branch

point
x
y
z

x x x x x x x x x x

y y y y y y y y y y

z z z z z z z z z z

Branches File 1 "Event"

Events

Events

GridKa School 2012, ROOT/PROOF tutorial

Events are units of data which are stored in trees and can be
processed independently from each other (PROOF’s event
level parallelism is based on these properties).

Chains (class TChain)

GridKa School 2012, ROOT/PROOF tutorial

  A chain is a list of trees (in several files)
  TTree methods can be used

  Draw(), Scan(), etc.
 these iterate over all elements of the chain

  Selectors can be used with chains
  Process(const char* selectorFileName)

Chain

Tree1 (File1)

Tree2 (File2)

Tree3 (File3)

Tree4 (File3)

Tree5 (File4)

once on your client

Selectors (class TSelector)
Local analysis case

for each tree

for each event

  Classes derived from TSelector can run
locally

  Begin() and SlaveBegin()

  Init(TTree* tree)

  Process(Long64_t entry)

  Terminate()

GridKa School 2012, ROOT/PROOF tutorial

ROOT Features: Data Analysis

GridKa School 2012, ROOT/PROOF tutorial

More information on ROOT

GridKa School 2012, ROOT/PROOF tutorial

  http://root.cern.ch
  Download

  binaries, source

  Documentation
  User’s guide

  Tutorials

  FAQ

  Mailing list
  Forum

ROOT Tutorial

GridKa School 2012, ROOT/PROOF tutorial

GridKa School 2012, ROOT/PROOF tutorial

http://mon1.saske.sk/peac/doc/peac-tut/PEACTutorial_PROOFtutorial.html
http://root.cern.ch/drupal/content/peac

In this tutorial you will learn how to…
  Use CLI and GUI
  Create functions and histograms

  Visualize (draw) them
  Create and explore files
  Create and explore trees
  Create chains
  Write a selector class
  Analyze data contained in trees and chains on your machine

Preparations for the tutorial

GridKa School 2012, ROOT/PROOF tutorial

  Connect to your UI login server
  Attention! Use –Y option for SSH:

  e.g. ssh –Y –p 24 gks098@gks-211.scc.kit.edu

  Connect to machines gks-NNN.scc.kit.edu
  e.g. ssh –Y gs023@gks-032.scc.kit.edu
  We will tell you the number of machine you should connect to
  Verify that you have connected to proper machine running “hostname –f ”

  Run the following command:
  source /opt/PEAC/sw/current/VO_PEAC/ROOT/v5-34-01/peac-env.sh
 It will set system paths to include ROOT binary and the libraries

  Start root:
  root

  You should see ROOT start screen with logo and the ROOT version: 5-34-01

Macros for tutorial

GridKa School 2012, ROOT/PROOF tutorial

  Go to the page
http://mon1.saske.sk/peac/doc/peac-tut/PEACTutorial.html

  Download the archive by the link specified in section 1.1,
“Tutorials”

  Unpack the archive:
$> tar -zxvf GridKa2012.tar.gz
Directory GridKa2012 will be created containing tutorial

macros.

We strongly recommend you to type the code you find
at tutorial documentation page!

What is PROOF? Why PROOF?

GridKa School 2012, ROOT/PROOF tutorial

  PROOF stands for Parallel ROOt Facility
  It allows parallel processing of large amount of data. The output

results can be directly visualized (e.g. the output histogram can
be drawn at the end of the proof session).

  PROOF is NOT a batch system.
  The data which you process with PROOF can reside on your

computer, PROOF cluster disks or grid.
  The usage of PROOF is transparent: you should not rewrite

your code you are running locally on your computer.
  No special installation of PROOF software is necessary to

execute your code: PROOF is included in ROOT distribution.

How PROOF cluster works

GridKa School 2012, ROOT/PROOF tutorial

SKAF
xrootd SExproofd

xproofd

xrootd RDR+DS

prf001

xproofd

xrootd DS

prf002

xproofd

xrootd DS

prf004xproofd

xrootd DS

prf003

root

Remote PROOF Cluster

Data

root

root

root

Client –
Local PC

ana.C

stdout/result

node1

node2

node3

node4

ana.C

root

How does PROOF analysis work?

GridKa School 2012, ROOT/PROOF tutorial

Data

Proof master
Proof slave

Result

Data

Result

Data

Result

Result

Trivial parallelism

GridKa School 2012, ROOT/PROOF tutorial

PROOF terminology

GridKa School 2012, ROOT/PROOF tutorial

The following terms are used in PROOF:
  PROOF cluster

  Set of machines communicating with PROOF protocol. One of those machines is normally
designated as Master (multi-Master setup is possible as well). The rest of machines are Workers.

  Client
  Your machine running a ROOT session that is connected to a PROOF master.

  Master
  Dedicated node in PROOF cluster that is in charge of assigning workers the chunks of data to

be processed, collecting and merging the output and sending it to the Client.
  Slave/Worker

  Entity which processes portion of overall data split in packets. Every worker has its own root
session controlled by proofserv.exe process.

  Query
  A job submitted from the Client to the PROOF cluster.
 A query consists of a selector and a chain.

  Selector
  A class containing the analysis code (more details later)

  Chain
  A list of files (trees) to process (more details later)

  PROOF Archive (PAR) file
  Archive file containing files for building and setting up a package on the PROOF cluster.

Normally is used to supply extra packages used by user job.

What should I do to run a job on
PROOF cluster?

GridKa School 2012, ROOT/PROOF tutorial

  Create a chain (dataset) containing the files you want to analyze.
  Write your job code and put it in the selector (class deriving

from TSelector).
  Define inputs and outputs via predefined (by class TSelector)

lists (TList objects) fInput and fOutput.
  Create extra packages (if any) which you need and put them in

PAR file to be deployed on the PROOF cluster.

once on your client

once on each slave

Selectors (Class TSelector)
PROOF analysys case

for each tree

for each event

  Classes derived from TSelector can run in PROOF

  Begin()

  SlaveBegin()

  Init(TTree* tree)

  Process(Long64_t entry)

  SlaveTerminate()

  Terminate()

GridKa School 2012, ROOT/PROOF tutorial

Input / Output (1)

GridKa School 2012, ROOT/PROOF tutorial

  Output list
  The output has to be added to the output list on each slave (in

SlaveBegin/SlaveTerminate)
fOutput->Add(fResult)

  PROOF merges the results from each slave automatically (see
next slide)

  On the client (in Terminate) you retrieve the object and save
it, display it, or do any other operation on it:
fOutput->FindObject("myResult")

Input / Output (2)

GridKa School 2012, ROOT/PROOF tutorial

  Merging
  Objects are identified by name
  Standard merging implementation

for histograms, trees, n-tuples
available

  Other classes need to implement
Merge(TCollection*)

  When no merging function is
available all the individual objects are
returned

Result from
Slave 1

Result from
Slave 2

Final result

Merge()

The structure of the PAR files

GridKa School 2012, ROOT/PROOF tutorial

  PAR files: PROOF ARchive
  Gzipped tar file
  PROOF-INF directory
  BUILD.sh, building the package, executed per Worker
  SETUP.C, set environment, load libraries, executed per Worker

  API to manage and activate packages
gProof->UploadPackage("package.par")
gProof->EnablePackage("package")

Datasets

GridKa School 2012, ROOT/PROOF tutorial

  A dataset represents a list of files
  Users register datasets

  The files contained in a dataset are automatically copied from external storage
(e.g. grid)

  Datasets are used for processing with PROOF
  Contain all relevant information to start processing (location of files, abstract

description of content of files)

  Datasets are public for reading
  Dataset is a TFileCollection object

Running locally vs. PROOF Lite vs. PROOF

GridKa School 2012, ROOT/PROOF tutorial

TChain* ch = new TChain(<tree name>, <chain title>);
ch->AddFile(“<file1.root>”);
ch->AddFile(“<file2.root>”);
ch->AddFile(“<file3.root>”);

ch->Process(”MySelector.cxx+");

TProof::Open(“lite://”);

ch->SetProof();

TProof::Open(“gks-016.scc.kit.edu”);

PROOF Tutorial

GridKa School 2012, ROOT/PROOF tutorial

http://mon1.saske.sk/peac/doc/peac-tut/PEACTutorial_PROOFtutorial.html
http://root.cern.ch/drupal/content/peac

In this tutorial you will learn how to…

 Analyze on PROOF Lite
 Create PAR files
  Process data stored in dataset
 Generate data for analysis
 Analyze with PROOF

Installation of PROOF cluster

GridKa School 2012, ROOT/PROOF tutorial

  Install root on all workers
  Start xproofd daemon

  By hand
 Using PoD

  http://pod.gsi.de

 Using PEAC (using SSH plugin from PoD)

  Start xrootd and cmsd daemons
 Using PEAC data management setup (available soon)

