
GridKa-School 2015, Dr. Christoph König, Dr. Michael Bredel

Software Defined Networking and
the OpenDaylight Controller

2

Profile – Dr. Michael Bredel

 Studied electrical engineering at the Technische Universität
Darmstadt

 PhD at the Leibniz Universität Hannover in the field of performance
evaluation of computer networks

 Network research engineer at the California Institute of Technology
and CERN

 Professor for Web Communications
and Information Systems at the university
of applied sciences in Kufstein, Austria

 Senior researcher at NEC Labs Heidelberg,
Germany

4

Educational Objectives

 Know the basic principles of
Software Defined Networking

 Know about the OpenFlow
protocol and its primitives
 Know about flow matching

 Know about OpenFlow
actions

 Know some tools to
experience SDN

 Know about the
OpenDaylight controller

5

Outline

 Presentation
 The evolution of servers and networks

 Software Defined Networking

 The OpenFlow protocol

 The OpenDaylight SDN controller

 Hands-On Exercises
 Installing, configuring, and running OpenDaylight

 Network emulation with MiniNet

 ODL features
 L2Switch

 Virtual Tenant Network

6

Evolution of Computing and Networking

 Evolution of servers

1990 2014

7

Evolution of Computing and Networking

 Evolution of networking – the control plane

Telnet SSH

1990 2014

8

Problems due to the Limited Control Plane

 Management interfaces
 How to manage a large number of switches and routers?

 How does it scale?

 How do you guarantee persistence, e.g. in ACL’s?

 How do you guarantee traffic separation?

 In-band traffic control
 How to optimize traffic flows globally?

 How to use multiple paths?
 How to get rid of Spanning Tree Protocol?

 How to minimize convergence time?

 How to obtain deterministic behavior?

9

Software Defined Networking

Switch

Specialized
Forwarding
Hardware

Operation
System

Features

Network
Application

Network
Application

Network Operation System

Switch

Specialized
Forwarding
Hardware

Operation
System

Features

Switch

Specialized
Forwarding
Hardware

Operation
System

Features

10

Software Defined Networking

Open APIs
to program the
network

Open Source
Integration layer

Open Standards
such as OpenFlow

Switch

vSwitch

Switch

vSwitch

Application Application Application

Network Operation System

1

2

3

REST

11

Software Defined Networking

 An approach to computer networking that allows for
managing network services through abstractions of
lower level functionality

 Decoupling of
 Data (or forwarding) plane

 Typically hardware (a circuit) that forwards packets from an
input port to the respective output port at line rate

 Control plane
 The logic, typically software, that controls the packet forwarding

12

OpenFlow Protocol

 OpenFlow is a communications protocol that gives
access to the forwarding plane of a network switch or
router over a control interface
 Control how packets are forwarded

 Implementable on COTS hardware

 Make deployed networks programmable

 Maintained by the Open Networking
Foundation (ONF)

13

OpenFlow Protocol

Controller
PC

Hardware
Layer

Software
Layer

Flow Table
MAC
src

MAC
dst

IP
Src

IP
Dst

TCP
sport

TCP
dport

Action

OpenFlow Firmware

1.2.3.4* port 1

port 4port 3port 2port 1

4.3.2.11.2.3.4

4.3.2.1* port 4

14

OpenFlow Protocol

 How the protocol works (in reactive mode)
 On packet arrival, match the header fields with flow entries

in a table

 If no entry matches
 Send the packet to the OpenFlow SDN controller

 If any entry matches
 Update the counters indicated in that entry

 Perform indicated actions

 Idle timeout
 Remove entry if no packets received for this time

 Hard timeout
 Remove entry after this time

 If both are set, the entry is removed if either one expires

15

OpenFlow Protocol

 OpenFlow flow table entries

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

Rule Action Stats

1. Forward packet to port(s)
2. Encapsulate and forward to controller
3. Drop packet
4. Send to normal processing pipeline
5. Modify Fields

+ mask what fields to match

Packet + byte counters

16

OpenFlow Protocol

 Flow table example

 Flow descriptions should be in normal form
 A flow may only specify a value for an L3 field if it also specifies a

particular L2 protocol
 For example, if the L2 protocol type dl_type is wildcarded, then L3 fields nw_src,

nw_dst, and nw_proto must also be wildcarded

* * 0a:c8:* * * * * * * * * * port 1 401

* * * * * IP * 192.168.*.* * * * * port 2 306

* * * * * * * * * * 21 21 drop 200

* * * * * * * * 0x806 * * * local 444

* * * * * * * * 0x1* * * * controller 1

P
ort

D
L_S

R
C

D
L_D

S
T

D
L_V

LA
N

P
riority

E
T

H
E

R
_T

Y
P

E

N
W

_S
R

C

N
W

_D
S

T

N
W

_P
R

O
T

O

N
W

_ToS

T
P

_S
R

C

T
P

_D
S

T

A
ction

C
ounter

17

OpenFlow Protocol

 OpenFlow actions
 Forward to physical port or to virtual port

 All: To all interfaces except incoming interface

 Controller: Encapsulate and send to controller

 Local: Send to its local networking stack

 Table: Perform actions in the flow table

 In_Port: Send back to input port

 Normal: Forward using traditional Ethernet

 Flood: Send along minimum spanning tree except the incoming interface

 Drop

 Modify Field
 Add or remove VLAN tags, ToS bits

 Change TTL

 Change L2 and L3 addresses

18

OpenFlow Versions

 OpenFlow 1.0
 As explained above

 Perform action on a match

 Ethernet/IP only

 OpenFlow 1.1
 Introduced table chaining and group tables

 Group Tables: each entry has a variable number of buckets

 All: Execute each bucket. Used for broadcast and multicast

 Indirect: Execute one predefined bucket

 Fast Failover : Execute the first live bucket →live port

 Added MPLS label and MPLS traffic class to match fields

 Added support for Q-in-Q, tunnels, and multipath

19

OpenFlow Versions

 OpenFlow 1.2
 Added IPv6 support

 Matching fields include IPv6 source address, destination
address, protocol number, traffic class. ICMPv6 type, ICMPv6
code, IPv6 neighbor discovery header fields, and IPv6 flow
labels

 Extensible Matches
 Type-Length-Value (TLV) structure

 Previously the order and length of match fields was fixed

 Experimenter extensions
 through dedicated fields and code points assigned by ONF

20

OpenFlow Versions

 OpenFlow 1.3
 Per-Connection Event Filtering: Better filtering of connections

to multiple controllers

 Cookies: A cookie field is added to messages containing new
packets sent to the controller
 This helps controller process the messages faster than if it had to

search its entire database

 Meter: Switch element that can measure and control the rate of
packets/bytes
 Meters are attached to a flow entry not to a queue or a port

 Meter Band: If the packet/byte rate exceeds a pre-defined threshold the
meter has triggered the band

 A meter may have multiple bands

 If on triggering a band the meter drops the packet, it is called rate limiter

21

OpenFlow Deployment Models

 Reactive vs. proactive flow control

Reactive

• First packet of flow triggers
 controller to insert flow
 entries

• Efficient use of flow table

• Every flow incurs small
 additional flow setup time

• If control connection lost,
 switch has limited utility

Proactive

• Controller pre-populates
 flow table in switch

• Zero additional flow setup
 time

• Loss of control connection
 does not disrupt traffic

• Essentially requires
 aggregated (wildcard) rules

22

OpenFlow Network Design

 Centralized vs. decentralized control

Centralized Control

OpenFlo
w
Switch

OpenFlo
w
Switch

OpenFlo
w
Switch

Controller

Distributed Control

OpenFlo
w
Switch

OpenFlo
w
Switch

OpenFlo
w
Switch

Controller

Controller

Controller

23

Bootstrapping OpenFlow Networks

 Switches require initial configuration
 Switch IP address

 Controller IP address

 Default gateway

 Switches connect to the controller

 Switch provides configuration information about ports

 Controller installs a rule to forward LLDP responses to
controller and then sends a LLDP request which is
forwarded to all neighbors

 Controller determines the topology from LLDP
responses

24

OpenDaylight SDN Controller

 OpenDaylight (ODL)
 An open platform for network programmability meant to

enable SDN and NFV for networks at any size and
scale

 OpenDaylight mainly consists of software designed to
be run on top of a Java Virtual Machine (JVM) and can
be run on any operating system and hardware as there
is a Java Runtime Environment (JRE) available for it

 Open Source project under The Linux Foundation,
funded April 8, 2013

26

OpenDaylight History

 The community operates around a time-based release
cycle of roughly every six months with frequent
development milestones

 The naming convention for each OpenDaylight
release follows the atomic number of elements in the
periodic table

 Releases
 Hydrogen, February 2014

 Helium, October 2014

 Lithium, June 2015

 Beryllium, February 2016 (Planned)

27

OpenDaylight History

 The community operates around a time-based release
cycle of roughly every six months with frequent
development milestones

 The naming convention for each OpenDaylight
release follows the atomic number of elements in the
periodic table

 Releases
 Hydrogen, February 2014

 Helium, October 2014

 Lithium, June 2015

 Beryllium, February 2016 (Planned)

28

OpenDaylight Architecture (Lithium)

 ODL Lithium

29

OpenDaylight Features (Lithium)

 AAA
 Standards-compliant Authentication, Authorization and

Accounting Services

 Support for persistent data stores, Federation and SSO
with OpenStack Keystone

 CAPWAP
 Theh CAPWAP plugin project enables the Opendaylight

Controller to manage CAPWAP compliant wireless
termination point network devices.

 Intelligent applications (e.g. radio planning, etc) can be
developed by tapping into the operational states, made
available via REST APIs, of WTP network devices.

30

OpenDaylight Features (Lithium)

 DLUX (openDayLight User eXperience)
 DLUX provides a modern and intuitive graphical user

interface for OpenDaylight based on the AngularJS
framework

 LACP
 The LACP Project within OpenDaylight implements Link

Aggregation Control Protocol (LACP) as an MD-SAL
service module and will be used to auto-discover and
aggregate multiple links between an OpenDaylight
controlled network and LACP-enabled endpoints or
switches

31

SDN LACP

32

OpenDaylight Features (Lithium)

 Time Series Data Repository
 The TSDR project in OpenDaylight creates a framework

for collecting, storing, querying, and maintaining time
series data in then OpenDaylight SDN controller

 With the capabilities of data collection, storage, query,
aggregation, and purging provided by TSDR, network
administrators could leverage various data driven
applications built on top of TSDR for security risk
detection, performance analysis, operational
configuration optimization, traffic engineering, and
network analytics with automated intelligence

33

OpenDaylight Features (Lithium)

 Virtual Tenant Network
 VTN is an application that provides multi-tenant virtual network

on an SDN controller

 VTN allows the users to define the network with a look and
feel of conventional L2/L3 network

 Once the network is designed on VTN, it will automatically be
mapped into underlying physical network, and then configured
on the individual switch leveraging SDN control protocol.

 The definition of logical plane makes it possible not only to
hide the complexity of the underlying network but also to
better manage network resources

 It achieves reducing reconfiguration time of network services
and minimizing network configuration errors.

34

Hands-on Exercises

35

Outline

 Log in to your VM

 Install and run OpenDaylight
 Start and Stop OpenDaylight

 Install basic features

 Install and run MiniNet to emulate an OpenFlow
network

 Use basic OpenDaylight features to operate the
OpenFlow network
 L2-Switch

 Virtual Tenant Network

36

The Student VM's

 Instance: SDN-1
 address: 141.52.228.133

 pass: ~dwZ58teD

 Instance: SDN-2
 address: 141.52.229.252

 pass: 4mDCm4ty(

 Instance: SDN-3
 address: 141.52.229.253

 pass: 0sVow2lO@

37

Installing OpenDaylight

 Requirements for running OpenDaylight
 Java 7+ installation (we use Java 8)

 Network connectivity

 Download OpenDaylight
 http://www.opendaylight.org/software/downloads

 The Karaf distribution has no features enabled by
default. However, all of the features are available to be
installed
 For compatibility reasons, you cannot enable all the features

simultaneously

38

Running OpenDaylight

 To run the Karaf distribution
 Unpack the .zip or .tar.gz file

 Navigate to the directory

 run ./bin/karaf

 Be patient !!!

 Example (for Linux)
$ tar -zxvf distribution-karaf-0.3.1-Lithium.tar.gz
distribution-karaf-0.3.1-Lithium-SR1/configuration/
distribution-karaf-0.3.1-Lithium-SR1/data/
...
distribution-karaf-0.3.1-Lithium-SR1/bin/stop.bat
$ cd distribution-karaf-0.3.1-Lithium-SR1
$./bin/karaf

39

Configure OpenDaylight

 Configuration can be done by some config files
 ./etc/...

 ./configuration

 logback.xml
 Logging in ODL is done by Logback

 By default logging messages are appended to
 stdout of the java process

 File data/log/karaf.log

 When debugging a problem it might be useful to
increase logging level

<logger name="org.opendaylight.controller" level="DEBUG"/>

40

Running OpenDaylight

 Once, OpenDaylight has been startet …
 Press tab for a list of available commands

 Typing [cmd] --help will show help for a specific
command

 Press ctrl-d or type system:shutdown or logout to
shutdown OpenDaylight

 OpenDaylight starts with no feature installed by default

 To list the installed features type

$ feature:list -i

41

Installing Components

 To install a feature use the following command in the
Karaf console

$ feature:install

 For Example

$ feature:install <feature-name>

 For a list of available features

$ feature:list

42

Installing Components

 OpenDaylight starts with no feature installed
by default

 For a start, install the following features
 feature:install odl-base-all

 feature:install odl-aaa-authn

 feature:install odl-restconf

 feature:install odl-dlux-core odl-dlux-node

 feature:install odl-openflowplugin-all

 feature:install odl-l2switch-all odl-l2switch-switch-ui

 feature:install odl-vtn-manager odl-vtn-manager-rest

43

Postman REST Client

 Postman is an alternative to curl

 Google Chrome App Postman
 Postman is a generic REST client that runs in

the browser

 Easy to use (compare, e.g. to curl)

 https://www.getpostman.com
 Available at the Chrome Web Store

44

OpenDaylight – RestConf for Inventory

 The REST URL for listing all the nodes
http://{ODL_IP}:8181/restconf/operational/opendaylight-
inventory:nodes/

 You will need to set the Accept header
Accept: application/xml

 You will also need to use HTTP Basic Auth with
Username: admin, Password: admin

 Alternately, if you have a node's id
http://{ODL_IP}:8181/restconf/operational/opendaylight-
inventory:nodes/node/<id>

http://{ODL_IP}:8181/restconf/operational/opendaylight-
inventory:nodes/node/openflow:1

45

MiniNet

 Mininet creates a virtual network, running real kernel,
switch and application code, on a single machine with
a single command:

$ sudo mn

 Creating topologies
 tree, linear, single, minimal, torus

 Show OpenFlow flows on a switch (s1)

$ sudo ovs-ofctl -O OpenFlow13 dump-flows s1

46

MiniNet

 Install the following features
 feature:install odl-openflowplugin-all

 To create a very simple topology
$ sudo mn
 --mac --switch=ovsk,protocols=OpenFlow13
 --controller=remote,ip=${ODL_IP},port=6653
 --topo=single

h2

s1

h1

47

DLUX – openDayLight User eXperience

 Install the following features
 feature:install odl-dlux-core

 feature:install odl-dlux-node

 Have a look at
 http://${ODL_IP}:8181/index.html

 Try to ping between
the hosts
 In MiniNet type:

$ h1 ping h2

48

OpenDaylight – RestConf to Push Flows

 The REST URL to push a flow
 Operation: PUT

 URI:
http://${ODL_IP}:8181/restconf/config/opendaylight-
inventory:nodes/node/openflow:1/table/0/flow/1

 You will need to set the Accept header
Accept: application/xml

 Content-type
application/xml

 Body (have a look at the wiki)
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
...
</flow>

49

OpenDaylight – RestConf to Push Flows

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <output-action>
 <output-node-connector>1</output-node-connector>
 <max-length>60</max-length>
 </output-action>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <table_id>0</table_id>
 <id>1</id>
 <cookie_mask>255</cookie_mask>
 <installHw>false</installHw>
 <match>
 <in-port>0</in-port>
 </match>
 <hard-timeout>12</hard-timeout>
 <cookie>4</cookie>
 <idle-timeout>34</idle-timeout>
 <flow-name>P0_TO_P1</flow-name>
 <priority>2</priority>
 <barrier>false</barrier>
</flow>

51

OpenDaylight – RestConf to Remove Flows

 The REST URL to remove a flow
 Operation: DELETE

 URI:

http://${ODL_IP}:8181/restconf/config/opendaylight-
inventory:nodes/node/openflow:1/table/0/flow/1

52

MiniNet

 To create a more complex topology

$ sudo mn
 --mac --switch=ovsk,protocols=OpenFlow13
 --controller=remote,ip=${ODL_IP},port=6653
 --topo=tree,3

creates a three layered
topology of 7 switches
and two attached hosts

53

L2Switch

 Install the following feature
 feature:install odl-l2switch-all

 feature:install odl-l2switch-switch-ui

 Components of the L2Switch
 Packet Handler

 Loop Remover

 Arp Handler

 Address Tracker

 Host Tracker

 L2Switch Main (Flow Installer)

54

L2Switch – Configuration

 L2Switch can be configured using the file
 ./etc/opendaylight/karaf/52-loopremover.xml

 ./etc/opendaylight/karaf/54-arphandler.xml

 ./etc/opendaylight/karaf/56-addresstracker.xml

 ./etc/opendaylight/karaf/58-l2switchmain.xml

 Ping between two hosts
$ h1 ping h2

 Verify the flows on the switch (in MiniNet)

 $ sudo ovs-ofctl -O OpenFlow13 dump-flows s1

55

Virtual Tenant Network

 Virtual Tenant Network service provides multi-tenant
virtual network on an SDN controller

 It enables the complete separation of logical plane
from physical plane

 It is implemented as two major components
 VTN Manager

 VTN Coordinator

56

Virtual Tenant Network – Installation

 VTN Manager is a set of OSGI bundles running in the
OpenDaylight Controller
 Install the following features

 feature:install odl-vtn-manager

 feature:install odl-vtn-manager-rest

 feature:install odl-vtn-manager-neutron

 VTN Coordinator is an application running outside the
controller

$ cd ./externalapps

$ sudo tar -C/ -jxvf distribution.vtn-
coordinator-6.1.2-SNAPSHOT-bin.tar.bz2

57

Virtual Tenant Network – VTN Coordinator

 Configuring database for VTN Coordinator
$ sudo /usr/local/vtn/sbin/db_setup

 Start the VTN Coordinator
$ sudo /usr/local/vtn/bin/vtn_start

 Stop the VTN Coordinator
$ sudo /usr/local/vtn/bin/vtn_stop

 NOTE! For security reason, VTN Coordinator does not
run if installation directory is group or world writable

$ sudo chmod go-w /usr/local/vtn /usr/local /usr

$ sudo chown -R root:root /usr/local/vtn

58

Virtual Tenant Network – VTN Coordinator

 Check the VTN Coordinator
$ curl --user admin:adminpass -H 'content-type:
application/json' -X GET
http://<VTN_COORDINATOR_IP_ADDRESS>:8083/vtn-
webapi/api_version.json

The result should look like this:

{"api_version":{"version":"V1.2"}}

	Folie 1
	Slide 2
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

