
GridKa-School 2015, Dr. Christoph König, Dr. Michael Bredel

Software Defined Networking and
the OpenDaylight Controller

2

Profile – Dr. Michael Bredel

 Studied electrical engineering at the Technische Universität
Darmstadt

 PhD at the Leibniz Universität Hannover in the field of performance
evaluation of computer networks

 Network research engineer at the California Institute of Technology
and CERN

 Professor for Web Communications
and Information Systems at the university
of applied sciences in Kufstein, Austria

 Senior researcher at NEC Labs Heidelberg,
Germany

4

Educational Objectives

 Know the basic principles of
Software Defined Networking

 Know about the OpenFlow
protocol and its primitives
 Know about flow matching

 Know about OpenFlow
actions

 Know some tools to
experience SDN

 Know about the
OpenDaylight controller

5

Outline

 Presentation
 The evolution of servers and networks

 Software Defined Networking

 The OpenFlow protocol

 The OpenDaylight SDN controller

 Hands-On Exercises
 Installing, configuring, and running OpenDaylight

 Network emulation with MiniNet

 ODL features
 L2Switch

 Virtual Tenant Network

6

Evolution of Computing and Networking

 Evolution of servers

1990 2014

7

Evolution of Computing and Networking

 Evolution of networking – the control plane

Telnet SSH

1990 2014

8

Problems due to the Limited Control Plane

 Management interfaces
 How to manage a large number of switches and routers?

 How does it scale?

 How do you guarantee persistence, e.g. in ACL’s?

 How do you guarantee traffic separation?

 In-band traffic control
 How to optimize traffic flows globally?

 How to use multiple paths?
 How to get rid of Spanning Tree Protocol?

 How to minimize convergence time?

 How to obtain deterministic behavior?

9

Software Defined Networking

Switch

Specialized
Forwarding
Hardware

Operation
System

Features

Network
Application

Network
Application

Network Operation System

Switch

Specialized
Forwarding
Hardware

Operation
System

Features

Switch

Specialized
Forwarding
Hardware

Operation
System

Features

10

Software Defined Networking

Open APIs
to program the
network

Open Source
Integration layer

Open Standards
such as OpenFlow

Switch

vSwitch

Switch

vSwitch

Application Application Application

Network Operation System

1

2

3

REST

11

Software Defined Networking

 An approach to computer networking that allows for
managing network services through abstractions of
lower level functionality

 Decoupling of
 Data (or forwarding) plane

 Typically hardware (a circuit) that forwards packets from an
input port to the respective output port at line rate

 Control plane
 The logic, typically software, that controls the packet forwarding

12

OpenFlow Protocol

 OpenFlow is a communications protocol that gives
access to the forwarding plane of a network switch or
router over a control interface
 Control how packets are forwarded

 Implementable on COTS hardware

 Make deployed networks programmable

 Maintained by the Open Networking
Foundation (ONF)

13

OpenFlow Protocol

Controller
PC

Hardware
Layer

Software
Layer

Flow Table
MAC
src

MAC
dst

IP
Src

IP
Dst

TCP
sport

TCP
dport

Action

OpenFlow Firmware

1.2.3.4* port 1

port 4port 3port 2port 1

4.3.2.11.2.3.4

4.3.2.1* port 4

14

OpenFlow Protocol

 How the protocol works (in reactive mode)
 On packet arrival, match the header fields with flow entries

in a table

 If no entry matches
 Send the packet to the OpenFlow SDN controller

 If any entry matches
 Update the counters indicated in that entry

 Perform indicated actions

 Idle timeout
 Remove entry if no packets received for this time

 Hard timeout
 Remove entry after this time

 If both are set, the entry is removed if either one expires

15

OpenFlow Protocol

 OpenFlow flow table entries

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

Rule Action Stats

1. Forward packet to port(s)
2. Encapsulate and forward to controller
3. Drop packet
4. Send to normal processing pipeline
5. Modify Fields

+ mask what fields to match

Packet + byte counters

16

OpenFlow Protocol

 Flow table example

 Flow descriptions should be in normal form
 A flow may only specify a value for an L3 field if it also specifies a

particular L2 protocol
 For example, if the L2 protocol type dl_type is wildcarded, then L3 fields nw_src,

nw_dst, and nw_proto must also be wildcarded

* * 0a:c8:* * * * * * * * * * port 1 401

* * * * * IP * 192.168.*.* * * * * port 2 306

* * * * * * * * * * 21 21 drop 200

* * * * * * * * 0x806 * * * local 444

* * * * * * * * 0x1* * * * controller 1

P
ort

D
L_S

R
C

D
L_D

S
T

D
L_V

LA
N

P
riority

E
T

H
E

R
_T

Y
P

E

N
W

_S
R

C

N
W

_D
S

T

N
W

_P
R

O
T

O

N
W

_ToS

T
P

_S
R

C

T
P

_D
S

T

A
ction

C
ounter

17

OpenFlow Protocol

 OpenFlow actions
 Forward to physical port or to virtual port

 All: To all interfaces except incoming interface

 Controller: Encapsulate and send to controller

 Local: Send to its local networking stack

 Table: Perform actions in the flow table

 In_Port: Send back to input port

 Normal: Forward using traditional Ethernet

 Flood: Send along minimum spanning tree except the incoming interface

 Drop

 Modify Field
 Add or remove VLAN tags, ToS bits

 Change TTL

 Change L2 and L3 addresses

18

OpenFlow Versions

 OpenFlow 1.0
 As explained above

 Perform action on a match

 Ethernet/IP only

 OpenFlow 1.1
 Introduced table chaining and group tables

 Group Tables: each entry has a variable number of buckets

 All: Execute each bucket. Used for broadcast and multicast

 Indirect: Execute one predefined bucket

 Fast Failover : Execute the first live bucket →live port

 Added MPLS label and MPLS traffic class to match fields

 Added support for Q-in-Q, tunnels, and multipath

19

OpenFlow Versions

 OpenFlow 1.2
 Added IPv6 support

 Matching fields include IPv6 source address, destination
address, protocol number, traffic class. ICMPv6 type, ICMPv6
code, IPv6 neighbor discovery header fields, and IPv6 flow
labels

 Extensible Matches
 Type-Length-Value (TLV) structure

 Previously the order and length of match fields was fixed

 Experimenter extensions
 through dedicated fields and code points assigned by ONF

20

OpenFlow Versions

 OpenFlow 1.3
 Per-Connection Event Filtering: Better filtering of connections

to multiple controllers

 Cookies: A cookie field is added to messages containing new
packets sent to the controller
 This helps controller process the messages faster than if it had to

search its entire database

 Meter: Switch element that can measure and control the rate of
packets/bytes
 Meters are attached to a flow entry not to a queue or a port

 Meter Band: If the packet/byte rate exceeds a pre-defined threshold the
meter has triggered the band

 A meter may have multiple bands

 If on triggering a band the meter drops the packet, it is called rate limiter

21

OpenFlow Deployment Models

 Reactive vs. proactive flow control

Reactive

• First packet of flow triggers
 controller to insert flow
 entries

• Efficient use of flow table

• Every flow incurs small
 additional flow setup time

• If control connection lost,
 switch has limited utility

Proactive

• Controller pre-populates
 flow table in switch

• Zero additional flow setup
 time

• Loss of control connection
 does not disrupt traffic

• Essentially requires
 aggregated (wildcard) rules

22

OpenFlow Network Design

 Centralized vs. decentralized control

Centralized Control

OpenFlo
w
Switch

OpenFlo
w
Switch

OpenFlo
w
Switch

Controller

Distributed Control

OpenFlo
w
Switch

OpenFlo
w
Switch

OpenFlo
w
Switch

Controller

Controller

Controller

23

Bootstrapping OpenFlow Networks

 Switches require initial configuration
 Switch IP address

 Controller IP address

 Default gateway

 Switches connect to the controller

 Switch provides configuration information about ports

 Controller installs a rule to forward LLDP responses to
controller and then sends a LLDP request which is
forwarded to all neighbors

 Controller determines the topology from LLDP
responses

24

OpenDaylight SDN Controller

 OpenDaylight (ODL)
 An open platform for network programmability meant to

enable SDN and NFV for networks at any size and
scale

 OpenDaylight mainly consists of software designed to
be run on top of a Java Virtual Machine (JVM) and can
be run on any operating system and hardware as there
is a Java Runtime Environment (JRE) available for it

 Open Source project under The Linux Foundation,
funded April 8, 2013

26

OpenDaylight History

 The community operates around a time-based release
cycle of roughly every six months with frequent
development milestones

 The naming convention for each OpenDaylight
release follows the atomic number of elements in the
periodic table

 Releases
 Hydrogen, February 2014

 Helium, October 2014

 Lithium, June 2015

 Beryllium, February 2016 (Planned)

27

OpenDaylight History

 The community operates around a time-based release
cycle of roughly every six months with frequent
development milestones

 The naming convention for each OpenDaylight
release follows the atomic number of elements in the
periodic table

 Releases
 Hydrogen, February 2014

 Helium, October 2014

 Lithium, June 2015

 Beryllium, February 2016 (Planned)

28

OpenDaylight Architecture (Lithium)

 ODL Lithium

29

OpenDaylight Features (Lithium)

 AAA
 Standards-compliant Authentication, Authorization and

Accounting Services

 Support for persistent data stores, Federation and SSO
with OpenStack Keystone

 CAPWAP
 Theh CAPWAP plugin project enables the Opendaylight

Controller to manage CAPWAP compliant wireless
termination point network devices.

 Intelligent applications (e.g. radio planning, etc) can be
developed by tapping into the operational states, made
available via REST APIs, of WTP network devices.

30

OpenDaylight Features (Lithium)

 DLUX (openDayLight User eXperience)
 DLUX provides a modern and intuitive graphical user

interface for OpenDaylight based on the AngularJS
framework

 LACP
 The LACP Project within OpenDaylight implements Link

Aggregation Control Protocol (LACP) as an MD-SAL
service module and will be used to auto-discover and
aggregate multiple links between an OpenDaylight
controlled network and LACP-enabled endpoints or
switches

31

SDN LACP

32

OpenDaylight Features (Lithium)

 Time Series Data Repository
 The TSDR project in OpenDaylight creates a framework

for collecting, storing, querying, and maintaining time
series data in then OpenDaylight SDN controller

 With the capabilities of data collection, storage, query,
aggregation, and purging provided by TSDR, network
administrators could leverage various data driven
applications built on top of TSDR for security risk
detection, performance analysis, operational
configuration optimization, traffic engineering, and
network analytics with automated intelligence

33

OpenDaylight Features (Lithium)

 Virtual Tenant Network
 VTN is an application that provides multi-tenant virtual network

on an SDN controller

 VTN allows the users to define the network with a look and
feel of conventional L2/L3 network

 Once the network is designed on VTN, it will automatically be
mapped into underlying physical network, and then configured
on the individual switch leveraging SDN control protocol.

 The definition of logical plane makes it possible not only to
hide the complexity of the underlying network but also to
better manage network resources

 It achieves reducing reconfiguration time of network services
and minimizing network configuration errors.

34

Hands-on Exercises

35

Outline

 Log in to your VM

 Install and run OpenDaylight
 Start and Stop OpenDaylight

 Install basic features

 Install and run MiniNet to emulate an OpenFlow
network

 Use basic OpenDaylight features to operate the
OpenFlow network
 L2-Switch

 Virtual Tenant Network

36

The Student VM's

 Instance: SDN-1
 address: 141.52.228.133

 pass: ~dwZ58teD

 Instance: SDN-2
 address: 141.52.229.252

 pass: 4mDCm4ty(

 Instance: SDN-3
 address: 141.52.229.253

 pass: 0sVow2lO@

37

Installing OpenDaylight

 Requirements for running OpenDaylight
 Java 7+ installation (we use Java 8)

 Network connectivity

 Download OpenDaylight
 http://www.opendaylight.org/software/downloads

 The Karaf distribution has no features enabled by
default. However, all of the features are available to be
installed
 For compatibility reasons, you cannot enable all the features

simultaneously

38

Running OpenDaylight

 To run the Karaf distribution
 Unpack the .zip or .tar.gz file

 Navigate to the directory

 run ./bin/karaf

 Be patient !!!

 Example (for Linux)
$ tar -zxvf distribution-karaf-0.3.1-Lithium.tar.gz
distribution-karaf-0.3.1-Lithium-SR1/configuration/
distribution-karaf-0.3.1-Lithium-SR1/data/
...
distribution-karaf-0.3.1-Lithium-SR1/bin/stop.bat
$ cd distribution-karaf-0.3.1-Lithium-SR1
$./bin/karaf

39

Configure OpenDaylight

 Configuration can be done by some config files
 ./etc/...

 ./configuration

 logback.xml
 Logging in ODL is done by Logback

 By default logging messages are appended to
 stdout of the java process

 File data/log/karaf.log

 When debugging a problem it might be useful to
increase logging level

<logger name="org.opendaylight.controller" level="DEBUG"/>

40

Running OpenDaylight

 Once, OpenDaylight has been startet …
 Press tab for a list of available commands

 Typing [cmd] --help will show help for a specific
command

 Press ctrl-d or type system:shutdown or logout to
shutdown OpenDaylight

 OpenDaylight starts with no feature installed by default

 To list the installed features type

$ feature:list -i

41

Installing Components

 To install a feature use the following command in the
Karaf console

$ feature:install

 For Example

$ feature:install <feature-name>

 For a list of available features

$ feature:list

42

Installing Components

 OpenDaylight starts with no feature installed
by default

 For a start, install the following features
 feature:install odl-base-all

 feature:install odl-aaa-authn

 feature:install odl-restconf

 feature:install odl-dlux-core odl-dlux-node

 feature:install odl-openflowplugin-all

 feature:install odl-l2switch-all odl-l2switch-switch-ui

 feature:install odl-vtn-manager odl-vtn-manager-rest

43

Postman REST Client

 Postman is an alternative to curl

 Google Chrome App Postman
 Postman is a generic REST client that runs in

the browser

 Easy to use (compare, e.g. to curl)

 https://www.getpostman.com
 Available at the Chrome Web Store

44

OpenDaylight – RestConf for Inventory

 The REST URL for listing all the nodes
http://{ODL_IP}:8181/restconf/operational/opendaylight-
inventory:nodes/

 You will need to set the Accept header
Accept: application/xml

 You will also need to use HTTP Basic Auth with
Username: admin, Password: admin

 Alternately, if you have a node's id
http://{ODL_IP}:8181/restconf/operational/opendaylight-
inventory:nodes/node/<id>

http://{ODL_IP}:8181/restconf/operational/opendaylight-
inventory:nodes/node/openflow:1

45

MiniNet

 Mininet creates a virtual network, running real kernel,
switch and application code, on a single machine with
a single command:

$ sudo mn

 Creating topologies
 tree, linear, single, minimal, torus

 Show OpenFlow flows on a switch (s1)

$ sudo ovs-ofctl -O OpenFlow13 dump-flows s1

46

MiniNet

 Install the following features
 feature:install odl-openflowplugin-all

 To create a very simple topology
$ sudo mn
 --mac --switch=ovsk,protocols=OpenFlow13
 --controller=remote,ip=${ODL_IP},port=6653
 --topo=single

h2

s1

h1

47

DLUX – openDayLight User eXperience

 Install the following features
 feature:install odl-dlux-core

 feature:install odl-dlux-node

 Have a look at
 http://${ODL_IP}:8181/index.html

 Try to ping between
the hosts
 In MiniNet type:

$ h1 ping h2

48

OpenDaylight – RestConf to Push Flows

 The REST URL to push a flow
 Operation: PUT

 URI:
http://${ODL_IP}:8181/restconf/config/opendaylight-
inventory:nodes/node/openflow:1/table/0/flow/1

 You will need to set the Accept header
Accept: application/xml

 Content-type
application/xml

 Body (have a look at the wiki)
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
...
</flow>

49

OpenDaylight – RestConf to Push Flows

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<flow xmlns="urn:opendaylight:flow:inventory">
 <strict>false</strict>
 <instructions>
 <instruction>
 <order>0</order>
 <apply-actions>
 <action>
 <order>0</order>
 <output-action>
 <output-node-connector>1</output-node-connector>
 <max-length>60</max-length>
 </output-action>
 </action>
 </apply-actions>
 </instruction>
 </instructions>
 <table_id>0</table_id>
 <id>1</id>
 <cookie_mask>255</cookie_mask>
 <installHw>false</installHw>
 <match>
 <in-port>0</in-port>
 </match>
 <hard-timeout>12</hard-timeout>
 <cookie>4</cookie>
 <idle-timeout>34</idle-timeout>
 <flow-name>P0_TO_P1</flow-name>
 <priority>2</priority>
 <barrier>false</barrier>
</flow>

51

OpenDaylight – RestConf to Remove Flows

 The REST URL to remove a flow
 Operation: DELETE

 URI:

http://${ODL_IP}:8181/restconf/config/opendaylight-
inventory:nodes/node/openflow:1/table/0/flow/1

52

MiniNet

 To create a more complex topology

$ sudo mn
 --mac --switch=ovsk,protocols=OpenFlow13
 --controller=remote,ip=${ODL_IP},port=6653
 --topo=tree,3

creates a three layered
topology of 7 switches
and two attached hosts

53

L2Switch

 Install the following feature
 feature:install odl-l2switch-all

 feature:install odl-l2switch-switch-ui

 Components of the L2Switch
 Packet Handler

 Loop Remover

 Arp Handler

 Address Tracker

 Host Tracker

 L2Switch Main (Flow Installer)

54

L2Switch – Configuration

 L2Switch can be configured using the file
 ./etc/opendaylight/karaf/52-loopremover.xml

 ./etc/opendaylight/karaf/54-arphandler.xml

 ./etc/opendaylight/karaf/56-addresstracker.xml

 ./etc/opendaylight/karaf/58-l2switchmain.xml

 Ping between two hosts
$ h1 ping h2

 Verify the flows on the switch (in MiniNet)

 $ sudo ovs-ofctl -O OpenFlow13 dump-flows s1

55

Virtual Tenant Network

 Virtual Tenant Network service provides multi-tenant
virtual network on an SDN controller

 It enables the complete separation of logical plane
from physical plane

 It is implemented as two major components
 VTN Manager

 VTN Coordinator

56

Virtual Tenant Network – Installation

 VTN Manager is a set of OSGI bundles running in the
OpenDaylight Controller
 Install the following features

 feature:install odl-vtn-manager

 feature:install odl-vtn-manager-rest

 feature:install odl-vtn-manager-neutron

 VTN Coordinator is an application running outside the
controller

$ cd ./externalapps

$ sudo tar -C/ -jxvf distribution.vtn-
coordinator-6.1.2-SNAPSHOT-bin.tar.bz2

57

Virtual Tenant Network – VTN Coordinator

 Configuring database for VTN Coordinator
$ sudo /usr/local/vtn/sbin/db_setup

 Start the VTN Coordinator
$ sudo /usr/local/vtn/bin/vtn_start

 Stop the VTN Coordinator
$ sudo /usr/local/vtn/bin/vtn_stop

 NOTE! For security reason, VTN Coordinator does not
run if installation directory is group or world writable

$ sudo chmod go-w /usr/local/vtn /usr/local /usr

$ sudo chown -R root:root /usr/local/vtn

58

Virtual Tenant Network – VTN Coordinator

 Check the VTN Coordinator
$ curl --user admin:adminpass -H 'content-type:
application/json' -X GET
http://<VTN_COORDINATOR_IP_ADDRESS>:8083/vtn-
webapi/api_version.json

The result should look like this:

{"api_version":{"version":"V1.2"}}

	Folie 1
	Slide 2
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

